The regulation of metabolism and growth must be tightly coupled to guarantee the efficient use of energy and anabolic substrates throughout the cell cycle. Fructose 2,6-bisphosphate (Fru-2,6-BP) is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in glycolysis. The concentration of Fru-2,6-BP in mammalian cells is set by four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4), which interconvert fructose 6-phosphate and Fru-2,6-BP. The relative functions of the PFKFB3 and PFKFB4 enzymes are of particular interest because they are activated in human cancers and increased by mitogens and low oxygen. We examined the cellular localization of PFKFB3 and PFKFB4 and unexpectedly found that whereas PFKFB4 localized to the cytoplasm (i.e. the site of glycolysis), PFKFB3 localized to the nucleus. We then overexpressed PFKFB3 and observed no change in glucose metabolism but rather a marked increase in cell proliferation. These effects on proliferation were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrating a requirement for nuclear delivery of Fru-2,6-BP. Using protein array analyses, we then found that ectopic expression of PFKFB3 increased the expression of several key cell cycle proteins, including cyclin-dependent kinase (Cdk)-1, Cdc25C, and cyclin D3 and decreased the expression of the cell cycle inhibitor p27, a universal inhibitor of Cdk-1 and the cell cycle. We also observed that the addition of Fru-2,6-BP to HeLa cell lysates increased the phosphorylation of the Cdk-specific Thr-187 site of p27. Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that Fru-2,6-BP may couple the activation of glucose metabolism with cell proliferation.Neoplastic transformation and growth require a massive increase in glucose uptake and glycolytic flux not only for energy production but also for the synthesis of nucleic acids, amino acids, and fatty acids. A central control point of glycolysis is the negative allosteric regulation of a rate-limiting enzyme, phosphofructokinase-1 (PFK-1), 2 by ATP (i.e. the Pasteur effect) (1, 2). When intracellular ATP production exceeds usage, ATP inhibits PFK-1 and glycolytic flux. Fructose 2,6-bisphosphate (Fru-2,6-BP) is a potent allosteric activator of PFK-1 that overrides this inhibitory influence of ATP on PFK-1, allowing forward flux of the entire pathway (3-5).The steady-state cellular concentration of Fru-2,6-BP is dependent on the activities of bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB), which are encoded by four independent genes (PFKFB1-4) (6, 7). The PFKFB3 mRNA is distinguished by the presence of multiple copies of an AUUUA instability motif in its 3Ј-untranslated region and the PFKFB3 protein product has a high kinase:phosphatase activity ratio (740:1) (8). PFKFB3 mRNA is overexpressed by rapidly proliferating transformed cells and the PFKFB3 protein is high...
Cisplatin, a chemotherapeutic used for the treatment of solid cancers, has nephrotoxic side effects leading to acute kidney injury (AKI). Cisplatin cannot be given to patients that have comorbidities that predispose them to an increased risk for AKI. Even without these comorbidities, 30% of patients administered cisplatin will develop kidney injury, requiring the oncologist to withhold or reduce the next dose, leading to a less effective therapeutic regimen. Although recovery can occur after one episode of cisplatin-induced AKI, longitudinal studies have indicated that multiple episodes of AKI lead to the development of chronic kidney disease, an irreversible disease with no current treatment. The standard mouse model of cisplatin-induced AKI consists of one high dose of cisplatin (>20 mg/kg) that is lethal to the animal 3 days later. This model does not accurately reflect the dosing regimen patients receive nor does it allow for the long-term study of kidney function and biology. We have developed a repeated dosing model whereby cisplatin is given once a week for 4 wk. Comparison of the repeated dosing model with the standard dosing model demonstrated that inflammatory cytokines and chemokines were induced in the repeated dosing model, but levels of cell death were lower in the repeated dosing model. The repeated dosing model had increased levels of fibrotic markers (fibronectin, transforming growth factor-β, and α-smooth muscle actin) and interstitial fibrosis. These data indicate that the repeated dosing model can be used to study the AKI to chronic kidney disease progression as well as the mechanisms of this progression.
Choline is an essential anabolic substrate for the synthesis of phospholipids. Choline kinase phosphorylates choline to phosphocholine that serves as a precursor for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the synthesis of lipid signaling molecules. Nuclear magnetic resonance (NMR)-based metabolomic studies of human tumors have identified a marked increase in the intracellular concentration of phosphocholine relative to normal tissues. We postulated that the observed intracellular pooling of phosphocholine may be required to sustain the production of the pleiotropic lipid second messenger, phosphatidic acid. Phosphatidic acid is generated from the cleavage of phosphatidylcholine by phospholipase D2 and is a key activator of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT survival signaling pathways. In this study we show that the steady-state concentration of phosphocholine is increased by the ectopic expression of oncogenic H-Ras V12 in immortalized human bronchial epithelial cells. We then find that small interfering RNA (siRNA) silencing of choline kinase expression in transformed HeLa cells completely abrogates the high concentration of phosphocholine, which in turn decreases phosphatidylcholine, phosphatidic acid and signaling through the MAPK and PI3K/AKT pathways. This simultaneous reduction in survival signaling markedly decreases the anchorage-independent survival of HeLa cells in soft agar and in athymic mice. Last, we confirm the relative importance of phosphatidic acid for this pro-survival effect as phosphatidic acid supplementation fully restores MAPK signaling and partially rescues HeLa cells from choline kinase inhibition. Taken together, these data indicate that the pooling of phosphocholine in cancer cells may be required to provide a ready supply of phosphatidic acid necessary for the feedforward amplification of cancer survival signaling pathways.
Lee JF, Gordon S, Estrada R, Wang L, Siow DL, Wattenberg BW, Lominadze D, Lee MJ. Balance of S1P 1 and S1P2 signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature. Am J Physiol Heart Circ Physiol 296: H33-H42, 2009. First published November 14, 2008 doi:10.1152/ajpheart.00097.2008.-Sphingosine-1-phosphate (S1P) regulates various molecular and cellular events in cultured endothelial cells, such as cytoskeletal restructuring, cell-extracellular matrix interactions, and intercellular junction interactions. We utilized the venular leakage model of the cremaster muscle vascular bed in Sprague-Dawley rats to investigate the role of S1P signaling in regulation of microvascular permeability. S1P signaling is mediated by the S1P family of G protein-coupled receptors (S1P 1-5 receptors). S1P1 and S1P2 receptors, which transduce stimulatory and inhibitory signaling, respectively, are expressed in the endothelium of the cremaster muscle vasculature. S1P administration alone via the carotid artery was unable to protect against histamineinduced venular leakage of the cremaster muscle vascular bed in Sprague-Dawley rats. However, activation of S1P 1-mediated signaling by SEW2871 and FTY720, two agonists of S1P 1, significantly inhibited histamine-induced microvascular leakage. Treatment with VPC 23019 to antagonize S1P 1-regulated signaling greatly potentiated histamine-induced venular leakage. After inhibition of S1P2 signaling by JTE-013, a specific antagonist of S1P2, S1P was able to protect microvascular permeability in vivo. Moreover, endothelial tight junctions and barrier function were regulated by S1P 1-and S1P 2-mediated signaling in a concerted manner in cultured endothelial cells. These data suggest that the balance between S1P 1 and S1P2 signaling regulates the homeostasis of microvascular permeability in the peripheral circulation and, thus, may affect total peripheral vascular resistance.spingosine-1-phosphate receptor subtypes; vascular integrity; signal transduction SPINGOSINE-1-PHOSPHATE (S1P), a serum-borne bioactive lipid mediator, regulates an array of biological activities in various cell types (13,14,28,42). Most, if not all, S1P-regulated functions are mediated by the S1P family of G protein-coupled receptors (1,20,48). Five members of the S1P receptor family have been identified: S1P 1 , S1P 2 , S1P 3 , S1P 4 , and S1P 5 , previously known as endothelial differentiation gene (EDG)-1, -5, -3, -6, and -8, respectively (6). It was demonstrated that S1P receptor subtypes couple to different G␣ polypeptides to regulate specific signaling pathways (2, 16, 46a). S1P receptor subtypes are expressed in distinct combinations in different cell types to produce an appropriate biological effect. For example, S1P 1 and S1P 3 are expressed in cultured endothelial cells (ECs) (18). The signaling pathways regulated by the S1P 1 and S1P 3 receptors in ECs are required for chemotaxis, adherens junction assembly, morphogenesis, and angiogenic response in vitro and in vivo (18 -20). H...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.