Portal hypertension due to either prehepatic portal hypertension or cirrhosis is associated with cardiovascular derangement. We aimed to delineate regulatory mechanisms in the brain stem cardiovascular nuclei in rat models of prehepatic portal hypertension and cirrhosis. Neuronal activation in the nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM) were assessed by immunohistochemical staining for the immediate-early gene product Fos. In the same sections, catecholaminergic neurons were counted by tyrosine hydroxylase (TH) staining. Ninety minutes after hypotensive hemorrhage (or no volume challenge), the animals were killed for Fos and TH medullary staining. These protocols were repeated after capsaicin administration. The NTS of unchallenged sham-operated rats had scant Fos-positive cells (3.6 +/- 0.4 cells/section), whereas hemorrhage significantly increased Fos staining (91.8 +/- 14). In contrast, the unchallenged portal hypertensive and cirrhotic groups showed increased Fos staining (14.3 +/- 5.8 and 32.8 +/- 2.8, respectively), which hemorrhage did not alter significantly. The numbers of TH-positive cells were similar in the three unchallenged groups; double labeling revealed that approximately 50% of TH-positive cells were activated by hemorrhage in the sham and cirrhotic rats but not the portal hypertensive rats. Similar patterns of Fos and TH staining were observed in the VLM. Capsaicin treatment not only significantly reduced the Fos-positive neuron numbers in portal hypertensive and cirrhotic rats but also attenuated hemorrhage-induced Fos and double-positive cells in both NTS and VLM. These results suggest that disordered trafficking in capsaicin-sensitive nerves and central dysregulation contribute to blunted cardiovascular responsiveness in cirrhosis and prehepatic portal hypertension.
Cardiovascular function in cirrhosis is deranged, with indirect evidence of abnormal central cardiovascular regulation. We aimed to elucidate the role of brainstem cardiovascular nuclei in hemodynamic regulation by examining the protein product, Fos, of the immediate-early gene c-fos, in cirrhotic rats. Cirrhosis was induced by chronic bile duct ligation (BDL) of 25-days duration, while controls underwent a sham operation. To examine the effects of jaundice per se in the absence of cirrhosis, a third group of 5-day BDL rats was also studied. All rats were anesthetized with pentobarbital, and catheters were inserted to measure baseline blood pressure and heart rate. Separate groups were then subjected to volume manipulation by a hypotensive hemorrhage or isotonic saline infusion, or no challenge. Ninety minutes after the volume manipulation, the animals were killed and the medulla sectioned and stained for Fos by immunohistochemisty. The nucleus tractus solitarius (NTS) of the sham-operated unchallenged rats showed scant Fos immunoreactivity (27.8 +/- 3.3 cells), but both hemorrhage and volume infusion significantly increased Fos staining (86.0 +/- 3.7 and 95.2 +/- 8.5, respectively). In contrast, the unchallenged cirrhotic rats showed markedly increased Fos in the NTS (154.6 +/- 27.0), but neither hemorrhage nor volume infusion significantly changed the amount of Fos staining. Fos staining in the ventrolateral medulla (VLM) followed a similar pattern with low staining in the unchallenged sham rats and increased staining in the other groups, but no differences between the unchallenged and the volume-manipulated cirrhotic groups. The 5-day BDL jaundiced rats showed no baseline increase in Fos staining, nor any significant increase after hemorrhage. These results showing baseline activation of central neuronal regions responsible for blood pressure homeostasis, but completely blunted responsiveness in cirrhotic rats, confirm a central origin of disordered cardiovascular regulation. The presence of jaundice may also contribute to the central cardiovascular hyporesponsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.