AFAP-110 is an actin-binding and -crosslinking protein that is enriched in Src and phorbol ester (PE)-induced podosomes. In vascular smooth muscle cells endogenous AFAP-110 localized to actin stress fibers and, in response to treatment with phorbol-12,13-dibutyrate (PDBu), to actin-rich podosomes. Since PEs can activate PKCα, AFAP-110 is a substrate of PKCα and PKCα–AFAP-110 interactions direct podosome formation, we sought to identify a PE-induced phosphorylation site in AFAP-110 and determine whether phosphorylation is linked to the formation of podosomes. Mutational analysis revealed Ser277 of AFAP-110 to be phosphorylated in PE-treated cells. The use of a newly generated, phospho-specific antibody directed against phosphorylated Ser277 revealed that PKCα activation is associated with PE-induced AFAP-110 phosphorylation. In PDBu-treated A7r5 rat vascular smooth muscle cells, immunolabeling using the phospho-specific antibody showed that phospho-AFAP-110 is primarily associated with actin in podosomes. Although mutation of Ser at position 277 to Ala (AFAP-110S277A) did not alter the ability of AFAP-110 to localize to podosomes, overexpression of AFAP-110S277A in treated and untreated A7r5 cells resulted in an increased number of cells that display podosomes. Video microscopy demonstrated that AFAP-110S277A expression correlates with an increased number of long-lived podosomes. Therefore, we hypothesize that AFAP-110 phosphorylation and/or dephosphorylation is involved in the regulation of podosome stability and lifespan.
Exoenzyme S (ExoS) is a bifunctional toxin directly translocated into eukaryotic cells by the Pseudomonas aeruginosa type III secretory (TTS) process. The amino-terminal GTPase-activating (GAP) activity and the carboxy-terminal ADP-ribosyltransferase (ADPRT) activity of ExoS have been found to target but exert opposite effects on the same low-molecular-weight G protein, Rac1. ExoS ADP-ribosylation of Rac1 is cell line dependent. In HT-29 human epithelial cells, where Rac1 is ADP-ribosylated by TTS-ExoS, Rac1 was activated and relocalized to the membrane fraction. Arg66 and Arg68 within the GTPase-binding region of Rac1 were identified as preferred sites of ExoS ADP-ribosylation. The modification of these residues by ExoS would be predicted to interfere with Rac1 inactivation and explain the increase in active Rac1 caused by ExoS ADPRT activity. Using ExoS-GAP and ADPRT mutants to examine the coordinate effects of the two domains on Rac1 function, limited effects of ExoS-GAP on Rac1 inactivation were evident in HT-29 cells. In J774A.1 macrophages, where Rac1 was not ADP-ribosylated, ExoS caused a decrease in the levels of active Rac1, and this decrease was linked to ExoS-GAP. Using immunofluorescence staining of Rac1 to understand the cellular basis for the targeting of ExoS ADPRT activity to Rac1, an inverse relationship was observed between Rac1 plasma membrane localization and Rac1 ADP-ribosylation. The results obtained from these studies have allowed the development of a model to explain the differential targeting and coordinate effects of ExoS GAP and ADPRT activity on Rac1 within the host cell.Pseudomonas aeruginosa is a ubiquitous, environmentally beneficial bacterium that can adapt to become a highly virulent opportunistic pathogen in compromised individuals. The versatility and pathogenicity of P. aeruginosa are multifactorial and relate to its ability to respond to its environment by the regulated production of a variety of cell-associated and extracellular products. The establishment of infection begins with the adherence of P. aeruginosa to host cells through type IV pili or nonpilus adherence mechanisms (42, 50, 52). After colonization, the organism ensures its survival in the host through the secretion of virulence factors, including exotoxin A (24), hemolysins (40), elastases LasA and LasB (2,20,21), and pigments (53). In addition to secreted virulence factors, P. aeruginosa is able to directly affect eukaryotic cell function through the contact-dependent translocation of effector proteins by the type III secretion system (59). Four P. aeruginosa-type III secretory (TTS) effector proteins have been identified, ExoS, ExoT, ExoU, and ExoY, each affecting eukaryotic cell function differently. Notably, the TTS system is found in both clinical and environmental P. aeruginosa isolates, suggesting an essential role of TTS in P. aeruginosa overall growth and survival (8,9,49). The integral relationship between P. aeruginosa TTS effectors and eukaryotic cell function is also evident in the requirement of eu...
Summary:A rate-limiting step in breast cancer progression is acquisition of the invasive phenotype, which can precede metastasis. Expression of cell-surface proteases at the leading edge of a migrating cell provides cells with a mechanism to cross tissue barriers. A newly appreciated mechanism that may be relevant for breast cancer cell invasion is the formation of invadopodia, well-defined structures that project from the ventral membrane and promote degradation of the extracellular matrix, allowing the cell to cross a tissue barrier. Recently, there has been some controversy and discussion as to whether invadopodia, which are associated with carcinoma cells, are related to a similar structure called podosomes, which are associated with normal cells. Invadopodia and podosomes share many common characteristics, including a similar size, shape, subcellular localization and an ability to promote invasion. These two structures also share many common protein components, which we outline herein. It has been speculated that podosomes may be precursors to invadopodia and by extension both structures may be relevant to cancer cell invasion. Here, we compare and contrast the protein components of invadopodia and podosomes and discuss a potential role for these proteins and the evidence that supports a role for invadopodia and podosomes in breast cancer invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.