Current acellular pertussis (aP) vaccines induce strong antibody and Th2 responses but fail to protect against nasal colonization and transmission of Bordetella pertussis. Furthermore, immunity wanes rapidly after immunization. We have developed a novel adjuvant combination (called LP-GMP), comprising c-di-GMP, an intracellular receptor stimulator of interferon genes (STING) agonist, and LP1569, a TLR2 agonist from B. pertussis, which synergistically induces production of IFN-β, IL-12 and IL-23, and maturation of dendritic cells. Parenteral immunization of mice with an experimental aP vaccine formulated with LP-GMP promoted Th1 and Th17 responses and conferred protection against lung infection with B. pertussis. Intranasal immunization with the same aP vaccine-induced potent B. pertussis-specific Th17 responses and IL-17-secreting respiratory tissue-resident memory (T) CD4 T cells, and conferred a high level of protection against nasal colonization as well as lung infection, which was sustained for at least 10 months. Furthermore, long-term protection against nasal colonization with B. pertussis correlated with the number of IL-17-secreting T cells in nasal tissue. Our study has identified an approach for inducing IL-17-secreting T cells that sustain sterilizing immunity against nasal colonization of mice with B. pertussis, and could form the basis of a third generation pertussis vaccine for humans.
BackgroundHeterologous effects of vaccines are mediated by 'trained immunity' whereby myeloid cells are metabolically and epigenetically reprogrammed resulting in heightened responses to subsequent insults. Adenovirus vaccine vector has been reported to induce trained immunity in mice. Therefore, we sought to determine if the ChAdOx1 nCoV-19 vaccine (AZD1222), which uses an adenoviral vector, could induce trained immunity in vivo in humans. MethodsTen healthy volunteers donated blood on the day before receiving the ChAdOx1 nCoV-19 vaccine and on day 14, 56 and 90 post vaccination. Monocytes were purified from PBMC; cell phenotype was determined by flow cytometry, expression of metabolic enzymes were quantified by RT-qPCR and production of cytokines and chemokine in response to stimulation ex vivo were analyzed by multiplex ELISA. ResultsMonocyte frequency and count were increased in peripheral blood up to 3 months post vaccination compared with their own pre-vaccine control. Expression of HLA-DR, CD40 and CD80 was enhanced on monocytes for up to 3 months following vaccination. Moreover, monocytes had increased expression of glycolysis-associated enzymes 2 months post vaccination. Upon stimulation ex vivo with unrelated antigens, monocytes produced increased IL-1β, IL-6, IL-10, CXCL1, and MIP-1α, and decreased TNF, compared with pre-vaccine controls. Resting monocytes produced more IFN-γ, IL-18, and MCP-1 up to 3 months post vaccination compared with pre-vaccine controls. ConclusionThese data provide evidence for the induction of trained immunity following a single dose of the ChAdOx1 nCoV-19 vaccine.
The burgeoning field of innate immune training, also called trained immunity, has given immunologists new insights into the role of innate responses in protection against infection and in modulating inflammation. Moreover, it has led to a paradigm shift in the way we think about immune memory and the interplay between innate and adaptive immune systems in conferring immunity against pathogens. Trained immunity is the term used to describe the medium-term epigenetic and metabolic reprogramming of innate immune cells in peripheral tissues or in the bone marrow stem cell niche. It is elicited by an initial challenge, followed by a significant period of rest that results in an altered response to a subsequent, unrelated challenge. Trained immunity can be associated with increased production of proinflammatory mediators, such as IL-1β, TNF and IL-6, and increased expression of markers on innate immune cells associated with antigen presentation to T cells. The microenvironment created by trained innate immune cells during the secondary challenge may have profound effects on T cell responses, such as altering the differentiation, polarisation and function of T cell subtypes, including Th17 cells. In addition, the Th1 cytokine IFN-γ plays a critical role in establishing trained immunity. In this review, we discuss the evidence that trained immunity impacts on or can be impacted by T cells. Understanding the interplay between innate immune training and how it effects adaptive immunity will give insights into how this phenomenon may affect the development or progression of disease and how it could be exploited for therapeutic interventions or to enhance vaccine efficacy.
In order to mount an appropriate immune response to infection, the macrophage must alter its metabolism by increasing aerobic glycolysis and concomitantly decreasing oxidative phosphorylation; a process known as the Warburg effect. Consequently, lactate, the end-product of glycolysis, accumulates in the extracellular environment. The subsequent effect of lactate on surrounding macrophages is poorly understood. Mycobacterium tuberculosis (Mtb), the causative organism of Tuberculosis (TB), is phagocytosed by macrophages in the airways. Mtb infected macrophages upregulate aerobic glycolysis and effector functions to try to kill the bacteria. Our lab has previously shown that human macrophages produce lactate in response to infection with Mtb. Although lactate has largely been considered a waste product of aerobic glycolysis, we hypothesised that the presence of extracellular lactate would impact subsequent immunometabolic responses and modulate macrophage function. We demonstrate that the presence of exogenous lactate has an immediate effect on the cellular metabolism of resting human macrophages; causing a decrease in extracellular acidification rate (ECAR; analogous to the rate of glycolysis) and an increase in the oxygen consumption rate (OCR; analogous to oxidative phosphorylation). When lactate-treated macrophages were stimulated with Mtb or LPS, glycolysis proceeds to increase immediately upon stimulation but oxidative phosphorylation remains stable compared with untreated cells that display a decrease in OCR. This resulted in a significantly reduced ECAR/OCR ratio early in response to stimulation. Since altered metabolism is intrinsically linked to macrophage function, we examined the effect of lactate on macrophage cytokine production and ability to kill Mtb. Lactate significantly reduced the concentrations of TNF and IL-1β produced by human macrophages in response to Mtb but did not alter IL-10 and IL-6 production. In addition, lactate significantly improved bacillary clearance in human macrophages infected with Mtb, through a mechanism that is, at least in part, mediated by promoting autophagy. These data indicate that lactate, the product of glycolysis, has a negative feedback effect on macrophages resulting in an attenuated glycolytic shift upon subsequent stimulation and reduced pro-inflammatory cytokine production. Interestingly, this pro-resolution effect of lactate is associated with increased capacity to kill Mtb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.