Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.
Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. The development of reliable experimental protocols for the synthesis of nanomaterials over a range of chemical compositions, sizes, and high monodispersity is one of the challenging issues in current nanotechnology. In the context of the current drive to develop green technologies in material synthesis, this aspect of nanotechnology is of considerable importance. Biological systems, masters of ambient condition chemistry, synthesize inorganic materials that are hierarchically organized from the nano- to the macroscale. Recent studies on the use of microorganisms in the synthesis of nanoparticles are a relatively new and exciting area of research with considerable potential for development. This review describes a brief overview of the current research worldwide on the use of microorganisms in the biosynthesis of metal nanoparticles and their applications.
Angiogenesis, the formation of new microvasculature by capillary sprouting, is crucial for tumour development. Hypoxic regions of solid tumours produce the powerful and directly acting angiogenic protein VEGF/VPF (vascular endothelial growth factor/vascular permeability factor). We now investigate the signal transduction pathway involved in hypoxic induction of VEGF expression. Hypoxia is known to induce a tyrosine kinase cascade that results in the activation of nitrogen-fixation genes in Rhizobium meliloti, and activation of tyrosine kinases is critical in signalling triggered by growth factors and ultraviolet light. We show here that genistein, an inhibitor of protein tyrosine kinase, blocks VEGF induction. Hypoxia increases the kinase activity of pp60c-src and its phosphorylation on tyrosine 416 but does not activate Fyn or Yes. Expression of either a dominant-negative mutant form of c-Src or of Raf-1 markedly reduces VEGF induction. VEGF induction by hypoxia in c-src(-) cells is impaired, although there is a compensatory activation of Fyn. Our results provide an insight into hypoxia-triggered intracellular signalling, define VEGF as a new downstream target for c-SRC, and suggest a role for c-SRc in promoting angiogenesis.
Angiogenesis has an essential role in many important pathological and physiological settings. It has been shown that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), a potent cytokine expressed by most malignant tumors, has critical roles in vasculogenesis and both physiological and pathological angiogenesis. We report here that at non-toxic levels, the neurotransmitter dopamine strongly and selectively inhibited the vascular permeabilizing and angiogenic activities of VPF/VEGF. Dopamine acted through D2 dopamine receptors to induce endocytosis of VEGF receptor 2, which is critical for promoting angiogenesis, thereby preventing VPF/VEGF binding, receptor phosphorylation and subsequent signaling steps. The action of dopamine was specific for VPF/VEGF and did not affect other mediators of microvascular permeability or endothelial-cell proliferation or migration. These results reveal a new link between the nervous system and angiogenesis and indicate that dopamine and other D2 receptors, already in clinical use for other purposes, might have value in anti-angiogenesis therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.