We have studied the mechanism of mutant p53-mediated oncogenesis using several tumor-derived mutants. Using a colony formation assay, we found that the majority of the mutants increased the number of colonies formed compared to the vector. Expression of tumor-derived p53 mutants increases the rate of cell growth, suggesting that the p53 mutants have 'gain of function' properties. We have studied the gene expression profile of cells expressing tumor-derived p53-D281G to identify genes transactivated by mutant p53. We report the transactivation of two genes, asparagine synthetase and human telomerase reverse transcriptase. Quantitative real-time PCR confirms this upregulation. Transient transfection promoter assays verify that tumor-derived p53 mutants transactivate these promoters significantly. An electrophoretic mobility shift assay shows that tumor-derived p53-mutants cannot bind to the wild-type p53 consensus sequence. The results presented here provide some evidence of a possible mechanism for mutant p53-mediated transactivation.
Tumor-derived p53 mutants activate transcription from promoters of various growth-related genes. We tested whether this transactivation function of the mutant protein is sufficient to induce tumorigenesis ('gain of function'). Tumor-derived mutant p53-281G transactivates the promoters of human epidermal growth factor receptor (EGFR) and human multiple drug resistance gene (MDR-1). To determine whether the C-terminal domain functions only as an oligomerization domain in mutant p53-mediated transactivation, we have replaced the tetramerization domain of p53 by a heterologous tetramerization domain; although this mutant protein formed tetramers in solution, it failed to transactivate significantly. Therefore, for successful mutant p53-mediated transactivation, sequences near the C-terminus of mutant p53 are required to perform functions in addition to tetramerization. We also demonstrate that co-expression of a deletion mutant of p53 (p53 del 1-293), which retains the p53 oligomerization domain, inhibits this transactivation. p53 del 1-293 co-immunoprecipitates with p53-281G suggesting that hetero-oligomers of p53-281G and p53 del 1-293 are defective in transactivation. We also show that a cell line stably transfected with p53-281G expresses higher levels of endogenous NF-kappaB and proliferating cell nuclear antigen (PCNA) compared to that transfected with vector alone. On co-expression, p53 del 1-293 lowered the levels of NF-kappaB and PCNA in p53-281G-expressing cells. However, on co-expression, p53 del 1-293 did not inhibit the tumorigenicity and colony forming ability of p53-281G expressing cells. Our earlier work showed that a deletion of the C-terminal sequences of p53-281G overlapping the oligomerization domain obliterates 'gain of function'. Taken together, the above information suggests that the C-terminal sequences have some critical role in 'gain of function' in addition to transactivation.
Tumor-derived p53 mutants activate transcription from promoters of various growth-related genes. We tested whether this transactivation function of the mutant protein is sucient to induce tumorigenesis (`gain of function'). Tumor-derived mutant p53-281G transactivates the promoters of human epidermal growth factor receptor (EGFR) and human multiple drug resistance gene . To determine whether the C-terminal domain functions only as an oligomerization domain in mutant p53-mediated transactivation, we have replaced the tetramerization domain of p53 by a heterologous tetramerization domain; although this mutant protein formed tetramers in solution, it failed to transactivate signi®cantly. Therefore, for successful mutant p53-mediated transactivation, sequences near the C-terminus of mutant p53 are required to perform functions in addition to tetramerization. We also demonstrate that co-expression of a deletion mutant of p53 (p53 del 1-293), which retains the p53 oligomerization domain, inhibits this transactivation. p53 del 1-293 co-immunoprecipitates with p53-281G suggesting that hetero-oligomers of p53-281G and p53 del 1-293 are defective in transactivation. We also show that a cell line stably transfected with p53-281G expresses higher levels of endogenous NF-kB and proliferating cell nuclear antigen (PCNA) compared to that transfected with vector alone. On co-expression, p53 del 1-293 lowered the levels of NF-kB and PCNA in p53-281G-expressing cells. However, on co-expression, p53 del 1-293 did not inhibit the tumorigenicity and colony forming ability of p53-281G expressing cells. Our earlier work showed that a deletion of the C-terminal sequences of p53-281G overlapping the oligomerization domain obliterates`gain of function'. Taken together, the above information suggests that the C-terminal sequences have some critical role in`gain of function' in addition to transactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.