Small oligomers of the amyloid β (Aβ) peptide, rather than the monomers or the fibrils, are suspected to initiate Alzheimer's disease (AD). However, their low concentration and transient nature under physiological conditions have made structural investigations difficult. A method for addressing such problems has been developed by combining rapid fluorescence techniques with slower two-dimensional solid-state NMR methods. The smallest Aβ40 oligomers that demonstrate a potential sign of toxicity, namely, an enhanced affinity for cell membranes, were thus probed. The two hydrophobic regions (residues 10-21 and 30-40) have already attained the conformation that is observed in the fibrils. However, the turn region (residues 22-29) and the N-terminal tail (residues 1-9) are strikingly different. Notably, ten of eleven known Aβ mutants that are linked to familial AD map to these two regions. Our results provide potential structural cues for AD therapeutics and also suggest a general method for determining transient protein structures.
Small hydrophobic oligomers of aggregation-prone proteins are thought to be generically toxic. Here we examine this view by perturbing an early folding contact between Phe19 and Leu34 formed during the aggregation of Alzheimer's amyloid-β (Aβ40) peptide. We find that even conservative single mutations altering this interaction can abolish Aβ40 toxicity. Significantly, the mutants are not distinguishable either by the oligomers size or by the end-state fibrillar structure from the wild type Aβ40. We trace the change in their toxicity to a drastic lowering of membrane affinity. Therefore, nonlocal folding contacts play a key role in steering the oligomeric intermediates through specific conformations with very different properties and toxicity levels. Our results suggest that engineering the folding energy landscape may provide an alternative route to Alzheimer therapeutics.
Observations like high Zn(2+) concentrations in senile plaques found in the brains of Alzheimer's patients and evidences emphasizing the role of Zn(2+) in amyloid-β (Aβ)-induced toxicity have triggered wide interest in understanding the nature of Zn(2+)-Aβ interaction. In vivo and in vitro studies have shown that aggregation kinetics, toxicity, and morphology of Aβ aggregates are perturbed in the presence of Zn(2+). Structural studies have revealed that Zn(2+) has a binding site in the N-terminal region of monomeric Aβ, but not much is precisely known about the nature of binding of Zn(2+) with aggregated forms of Aβ or its effect on the molecular structure of these aggregates. Here, we explore this aspect of the Zn(2+)-Aβ interaction using one- and two-dimensional (13)C and (15)N solid-state NMR. We find that Zn(2+) causes major structural changes in the N-terminal and the loop region connecting the two β-sheets. It breaks the salt bridge between the side chains of Asp(23) and Lys(28) by driving these residues into nonsalt-bridge-forming conformations. However, the cross-β structure of Aβ(42) aggregates remains unperturbed though the fibrillar morphology changes distinctly. We conclude that the salt bridge is not important for defining the characteristic molecular architecture of Aβ(42) but is significant for determining its fibrillar morphology and toxicity.
Identifying the structures of membrane bound proteins is critical to understanding their function in healthy and diseased states. We introduce a surface enhanced Raman spectroscopy technique which can determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, our approach does not require immobilization of molecules, as it uses spontaneous binding of proteins to lipid bilayer-encapsulated Ag nanoparticles. We apply this technique to probe membrane-attached oligomers of Amyloid-β40 (Aβ40), whose conformation is keenly sought in the context of Alzheimer's disease. Isotope-shifts in the Raman spectra help us obtain secondary structure information at the level of individual residues. Our results show the presence of a β-turn, flanked by two β-sheet regions. We use solid-state NMR data to confirm the presence of the β-sheets in these regions. In the membrane-attached oligomer, we find a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic Aβ fibrils. Significantly, this allows a "porin" like β-barrel structure, providing a structural basis for proposed mechanisms of Aβ oligomer toxicity.
The structural underpinnings for the higher toxicity of the oligomeric intermediates of amyloidogenic peptides, compared to the mature fibrils, remain unknown at present. The transient nature and heterogeneity of the oligomers make it difficult to follow their structure. Here, using vibrational and solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, we show that freely aggregating Aβ oligomers in physiological solutions have an intramolecular antiparallel configuration that is distinct from the intermolecular parallel β-sheet structure observed in mature fibrils. The intramolecular hydrogen-bonding network flips nearly 90°, and the two β-strands of each monomeric unit move apart, to give rise to the well-known intermolecular in-register parallel β-sheet structure in the mature fibrils. Solid-state nuclear magnetic resonance distance measurements capture the interstrand separation within monomer units during the transition from the oligomer to the fibril form. We further find that the D23-K28 salt-bridge, a major feature of the Aβ fibrils and a focal point of mutations linked to early onset Alzheimer's disease, is not detectable in the small oligomers. Molecular dynamics simulations capture the correlation between changes in the D23-K28 distance and the flipping of the monomer secondary structure between antiparallel and parallel β-sheet architectures. Overall, we propose interstrand separation and salt-bridge formation as key reaction coordinates describing the structural transition of the small Aβ oligomers to fibrils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.