Three novel water soluble neutral mononuclear oxidovanadium(iv) complexes 1-3, [VOLB] (where HL = dipicolinic acid (DPA) and B = imidazole (1)/1-methylimidazole (2)/1-allylimidazole (3)), were synthesized by the reaction of [VOL(HO)] with imidazole/1-methylimidazole/1-allylimidazole in ethanol. The complexes were thoroughly characterized by elemental analysis, IR, UV-Vis and EPR spectroscopy, magnetic susceptibility, cyclic voltammetry and single crystal X-ray diffraction techniques. In all the complexes the vanadium(iv) centre assumes a distorted octahedral environment. All the three complexes have similar structures and contain a range of intramolecular interactions such as hydrogen bonding, C-Hπ, and ππ stacking dominating their supramolecular architectures. A thermal study of the complexes was carried out to analyze their stability. The energy of non-covalent interactions and frontier orbitals for the complexes were also calculated by DFT. In order to investigate the binding interactions and conformational changes of the secondary structure of bovine serum albumin (BSA) with the complexes, absorption, fluorimetric titration and circular dichroism measurements in aqueous medium were carried out. Molecular docking studies have also been carried out to understand the binding modes and interaction patterns of the oxidovanadium(iv) complexes with BSA. The anticancer activities of the ligand and complexes 1-3 were tested against the human hepatic carcinoma cell line Hep3B. The complexes showed prominent cytotoxicity towards cancer cells.
Intriguing structure–activity relationships (SARs) indicating an apparent dependence of anticancer and haloperoxidase activities on the carbon chain length of the alkoxo group.
Mushrooms are customary influential sources of pharmaceutically active metabolites. Usually lanostane-type triterpenoids from mushrooms had prospective for cancer disease treatments. Recently, a triterpenoid, astrakurkurol obtained from the fresh basidiocarps of the edible mushroom Astraeus hygrometricus, drew attention as a new cytotoxic therapeutic. The structural stability of this triterpenoid had been established with the amalgamation of density functional theory (DFT) calculations and study of single-crystal X-ray diffraction. To successfully manifest astrakurkurol as a potent cytotoxic therapeutics, a wide apprehension on the molecular and cellular mechanisms underlying their action is prerequisite. On this account, our study was directed to scrutinize the influence of this triterpenoid on human hepatocellular cancer cell model Hep3B. Encapsulating all experimental facts revealed that astrakurkurol had significantly decreased cell viability in a concentration-dependent manner. This effect was unveiled to be apoptosis, documented by DNA fragmentation, chromatin condensation, nuclear shrinkage, membrane blebing, and imbalance of cell cycle distribution. Astrakurkurol persuaded the expression of death receptor associated proteins (Fas), which triggered caspase-8 activation following tBid cleavage. Moreover, tBid mediated ROS generation, which triggered mitochondrial dysfunction and activated the mitochondrial apoptotic events. Astrakurkurol cytotoxicity was based on caspase-8-mediated intrinsic apoptotic pathway and was associated with inhibition at Akt and NF-κB pathway. Astrakurkurol had also inhibited the migration of Hep3B cells, indicating its antimigratory potential. These findings led us to introduce astrakurkurol as a feasible and natural source for a safer cytotoxic drug against hepatocellular carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.