Reproductive output is often constrained by availability of macronutrients, especially protein. Long-term protein restriction, therefore, is expected to select for traits maximizing reproduction even under nutritional challenge. We subjected four replicate populations of Drosophila melanogaster to a complete deprivation of yeast supplement, thereby mimicking a protein-restricted ecology.Following 24 generations, compared to their matched controls, females from experimental populations showed increased reproductive output early in life, both in presence and absence of yeast supplement. The observed increase in reproductive output was without associated alterations in egg size, development time, preadult survivorship, body mass at eclosion, and life span of the females. Further, selection was ineffective on lifelong cumulative fecundity. However, females from experiment regime were found to have a significantly faster rate of reproductive senescence following the attainment of the reproductive peak early in life. Therefore, adaptation to yeast deprivation ecology in our study involved a novel reproductive strategy whereby females attained higher reproductive output early in life followed by faster reproductive aging. To the best of our knowledge, this is one of the cleanest demonstrations of optimization of fitness by fine-tuning of reproductive schedule during adaptation to a prolonged nutritional deprivation.
Dietary restriction is a common ecological challenge that limits reproduction. Yet only a few studies have explored adaptation under chronic protein deprivation. We subjected four replicate laboratory-adapted populations (YLB) of Drosophila melanogaster to a complete deprivation of live-yeast to mimic diet restricted ecology. In this insect, live-yeast is a critical source of protein that strongly affect reproductive output, especially in females. Following 24 generations of experimental evolution, compared to their matched controls (BL), females from YLB populations showed increase in reproductive output early in life, both in presence and absence of live-yeast. The observed increase in reproductive output was not associated with any accommodating alteration in average egg size; and development time, pre-adult survivorship, and body mass at eclosion of the progeny. Interestingly, adult lifespan was also found to be unaffected. However, YLB females were found to have a significantly faster rate of reproductive senescence albeit without any change in a measure of lifetime reproductive output. Taken together, adaptation to LYD ecology shows that reproductive output can evolve without affecting lifespan, suggesting that widely observed reproduction-survival trade-off is not universal. Populations can optimize fitness by fine tuning the scheduling of reproduction even when lifetime reproductive output is constrained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.