Vision impairment due to pathological damage of the retina can largely be prevented through periodic screening using fundus color imaging. However the challenge with large-scale screening is the inability to exhaustively detect fine blood vessels crucial to disease diagnosis. In this work we present a computational imaging framework using deep and ensemble learning based hybrid architecture for reliable detection of blood vessels in fundus color images. A deep neural network (DNN) is used for unsupervised learning of vesselness dictionaries using sparse trained denoising auto-encoders (DAE), followed by supervised learning of the DNN response using a random forest for detecting vessels in color fundus images. In experimental evaluation with the DRIVE database, we achieve the objective of vessel detection with max. avg. accuracy of 0.9327 and area under ROC curve of 0.9195.
Deep neural networks are capable of modelling highly nonlinear functions by capturing different levels of abstraction of data hierarchically. While training deep networks, first the system is initialized near a good optimum by greedy layer-wise unsupervised pre-training. However, with burgeoning data and increasing dimensions of the architecture, the time complexity of this approach becomes enormous. Also, greedy pre-training of the layers often turns detrimental by over-training a layer causing it to lose harmony with the rest of the network. In this paper a synchronized parallel algorithm for pre-training deep networks on multi-core machines has been proposed. Different layers are trained by parallel threads running on different cores with regular synchronization. Thus the pre-training process becomes faster and chances of overtraining are reduced. This is experimentally validated using a stacked autoencoder for dimensionality reduction of MNIST handwritten digit database. The proposed algorithm achieved 26% speed-up compared to greedy layer-wise pre-training for achieving the same reconstruction accuracy substantiating its potential as an alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.