BackgroundWithaferin A, which is a naturally derived steroidal lactone, has been found to prevent angiogenesis and metastasis in diverse tumor models. It has also been recognized by different groups for prominent anti-carcinogenic roles. However, in spite of these studies on withanolides, their detailed anti-metastatic mechanism of action remained unknown. The current study has poised to address the machinery involved in invasion regulation by stable derivative of Withaferin A, 3-azido Withaferin A (3-azidoWA) in human cervical HeLa and prostate PC-3 cells.Methods and Principal FindingsSub-toxic concentration of 3-azidowithaferin A (3-azido WA) inhibited cancer cell motility and invasion in wound healing and Boyden chamber invasion by suppressing MMP-2 activity in gelatin zymography and its expression has proved to be a major obstacle in chemo-sensitivity. We have uncovered a novel mechanism of 3-azidoWA induced extracellular pro-apoptotic candidate tumor suppressor Par-4 protein stimulation in conditioned media and also noticed a concomitant marked reduction in pAkt and pERK signaling by immunoblot analysis. Furthermore, our zymography results suggest 3-azidoWA induced MMP-2 inhibition was mediated through secretory Par-4. The inhibition of apoptosis by 3-azidoWA could not restore MMP-2 gelatinase activity. In addition to this, our in vivo animal experiments data showed 3-azidoWA abrogated neovascularisation in dose dependent manner in mouse Matrigel plug assay.Conclusion/SignificanceFor this report, we found that 3-azidoWA suppressed motility and invasion of HeLa and PC-3 cells in MMP-2 dependent manner. Our in vitro result strongly suggests that sub-toxic doses of 3-azidoWA enhanced the secretion of extracellular Par-4 that abolished secretory MMP-2 expression and activity. Depletion of secretory Par-4 restored MMP-2 expression and invasion capability of HeLa and PC-3 cells. Further, our findings implied that 3-azidoWA attenuated internal phospho-ERK and phospho-Akt expression in a dose dependent manner might play a key role in inhibition of mouse angiogenesis by 3-azidoWA.
Cyclic molecular frameworks, especially the benzannulated medium-sized and macrocyclic ring (BMR) systems, constitute an integral component of a large number of biologically significant natural or synthetic molecules. Many of these BMR compounds are either approved as drugs or have reached the late developmental stages in clinical trials. Such cyclic systems have been shown to possess great potential, especially in the discovery of new anticancer leads. Efforts from synthetic chemists have led to the development of elegant new strategies for the construction of BMR scaffolds of medicinalimportance. This review intends to highlight the importance of benzannulated medium-sized and macrocyclic rings (BMRs) and the strategies developed over the years for their synthesis.
The development of a cation clock method based on the intramolecular Sakurai reaction for probing the concentration dependence of the nucleophile in glycosylation reactions is described. The method is developed for the sulfoxide and trichloroacetimidate glycosylation protocols. The method reveals that O-glycosylation reactions have stronger concentration dependencies than C-glycosylation reactions consistent with a more associative, SN2-like character. For the 4,6-O-benzylidene-directed mannosylation reaction a significant difference in concentration dependence is found for the formation of the β- and α-anomers suggesting a difference in mechanism and a rationale for the optimization of selectivity regardless of the type of donor employed. In the mannose series the cyclization reaction employed as clock results in the formation of cis and trans-fused oxabicyclo[4,4,0]decanes as products with the latter being strongly indicative of the involvement of a conformationally mobile transient glycosyl oxocarbenium ion. With identical protecting group arrays cyclization in the glucopyranose series is more rapid than in the mannopyranose manifold. The potential application of related clock reactions in other carbenium ion-based branches of organic synthesis is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.