Lithium-mediated nitrogen reduction is a proven method to electrochemically synthesize ammonia; yet the process has so far been unstable, and the continuous deposition of lithium limits its practical applicability. One...
Boosting ammonia with a little oxygen
Ammonia synthesis from nitrogen for fertilizer production is highly energy intensive. Chemists are therefore exploring electrochemical approaches that could draw power from renewable sources while generating less waste. One promising cycle involves the reduction of lithium ions at an electrode, with the resultant metal in turn reducing nitrogen and regenerating the ions. Li
et al
. report the counterintuitive result that small quantities of oxygen could enhance the efficiency of this process, which they attribute to diffusional effects that limit excessive lithium reduction. —JSY
The lithium-mediated ammonia synthesis is so far the only proven electrochemical way to produce ammonia with promising faradaic efficiencies (FEs). However, to make this process commercially competitive, the ammonia formation rates per geometric surface area need to be increased significantly. In this study, we increased the current density by synthesizing high surface area Cu electrodes through hydrogen bubbling templating (HBT) on Ni foam substrates. With these electrodes, we achieved high ammonia formation rates of 46.0 ± 6.8 nmol s −1 cm geo −2 , at a current density of −100 mA/cm geo −2 at 20 bar nitrogen atmosphere and comparable cell potentials to flat foil electrodes. The FE and energy efficiency (EE) under these conditions were 13.3 ± 2.0% and 2.3 ± 0.3%, respectively. Additionally, we found that increasing the electrolyte salt concentration improves the stability of the system, which is attributed to a change of Li deposition and/or solid electrolyte interphase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.