Development of low-cost and high-performance oxygen evolution reaction catalysts is keyto implementing polymer electrolyte membrane water electrolyzers for hydrogen production. Iridiumbased oxides are the state-of-the-art acidic oxygen evolution reactio catalysts but still suffer from inadequate activity and stability, and iridium's scarcity motivates the discovery of catalysts with lower iridium loadings. Here we report a mass-selected iridium-tantalum oxide catalyst prepared by a magnetron-based cluster source with considerably reduced noble-metal loadings beyond a commercial IrO2 catalyst. A sensitive electrochemistry/mass-spectrometry instrument coupled with isotope labelling was employed to investigate the oxygen production rate under dynamic operating conditions to account for the occurrence of side reactions and quantify the number of surface active sites. Iridium-tantalum oxide nanoparticles smaller than 2 nm exhibit a mass activity of 1.2 ± 0.5 kA g Ir -1 and a turnover frequency of 2.3 ± 0.9 s -1 at 320 mV overpotential, which are two and four times higher than those of mass-selected IrO2, respectively. Density functional theory calculations reveal that special iridium coordinations and the lowered aqueous decomposition free energy might be responsible for the enhanced performance.Water electrolysis (2H2O → 2H2 + O2) driven by renewable power sources (for example, solar and wind) offers a sustainable strategy to store energy in the form of hydrogen fuel 1,2 . The polymer electrolyte membrane water electrolyzer (PEM-WE) operating in acidic media serves as a promising technology for such energy conversion and is preferable to alkaline conditions for hydrogen production because of its high current density, fast response, stable operation performance and low cross-over under pressurized
The lithium-mediated ammonia synthesis is so far the only proven electrochemical way to produce ammonia with promising faradaic efficiencies (FEs). However, to make this process commercially competitive, the ammonia formation rates per geometric surface area need to be increased significantly. In this study, we increased the current density by synthesizing high surface area Cu electrodes through hydrogen bubbling templating (HBT) on Ni foam substrates. With these electrodes, we achieved high ammonia formation rates of 46.0 ± 6.8 nmol s −1 cm geo −2 , at a current density of −100 mA/cm geo −2 at 20 bar nitrogen atmosphere and comparable cell potentials to flat foil electrodes. The FE and energy efficiency (EE) under these conditions were 13.3 ± 2.0% and 2.3 ± 0.3%, respectively. Additionally, we found that increasing the electrolyte salt concentration improves the stability of the system, which is attributed to a change of Li deposition and/or solid electrolyte interphase.
Nonprecious hydrogen evolution reaction (HER) catalysts commonly suffer from severe dissolution under open-circuit potential (OCP). In this work, using calculated Pourbaix diagrams, we quantitatively analyze the stability of a set of well-known active HER catalysts (MoS2, MoP, CoP, Pt in acid, and Ni3Mo in base) under working conditions. We determine that the large thermodynamic driving force toward decomposition created by the electrode/electrolyte interface potential is responsible for the substantial dissolution of nonprecious HER catalysts at OCP. Our analysis further shows the stability of HER catalysts in acidic solution is ordered as Pt ≈ MoS2 > MoP > CoP, which is confirmed by the measured dissolution rates using an inductively coupled plasma mass spectrometer. On the basis of the gained insights, we suggest strategies to circumvent the catalyst dissolution in aqueous solution.
The formation of multi-carbon products in CO or CO2 conversion is significantly influenced by local pH and local CO availability near the catalyst surface.
CO reduction studies over nanostructured copper catalysts are hindered by copper's instability in alkaline conditions, which results in dissolution during immersion into the electrolyte, leading to ill-defined catalyst morphologies and loadings. Immersing catalysts under potential control can alleviate this problem, but an experimental approach for cells generally used for CO reduction experiments is lacking. We demonstrate that by using an auxiliary electrochemical cell, electrodes can be introduced under potential control in these kinds of reactors. We investigated CO reduction over mass-selected copper nanoparticles using electrochemistry−mass spectrometry and show that the CO reduction activity increases by 4 orders of magnitude compared to experiments without potential control. This is attributed to the inhibition of Cu dissolution during immersion into the electrolyte as demonstrated by subsequent copper-stripping experiments. Thus, this study stresses the need for the application of such procedures in order to determine the intrinsic activity of nanostructured copper catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.