Cellular levels of the versatile second messenger cyclic (c)AMP are regulated by the antagonistic actions of the canonical G protein → adenylyl cyclase pathway that is initiated by G-protein–coupled receptors (GPCRs) and attenuated by phosphodiesterases (PDEs). Dysregulated cAMP signaling drives many diseases; for example, its low levels facilitate numerous sinister properties of cancer cells. Recently, an alternative paradigm for cAMP signaling has emerged in which growth factor–receptor tyrosine kinases (RTKs; e.g., EGFR) access and modulate G proteins via a cytosolic guanine-nucleotide exchange modulator (GEM), GIV/girdin; dysregulation of this pathway is frequently encountered in cancers. In this study, we present a network-based compartmental model for the paradigm of GEM-facilitated cross-talk between RTKs and G proteins and how that impacts cellular cAMP. Our model predicts that cross-talk between GIV, G αs, and G αi proteins dampens ligand-stimulated cAMP dynamics. This prediction was experimentally verified by measuring cAMP levels in cells under different conditions. We further predict that the direct proportionality of cAMP concentration as a function of receptor number and the inverse proportionality of cAMP concentration as a function of PDE concentration are both altered by GIV levels. Taking these results together, our model reveals that GIV acts as a tunable control valve that regulates cAMP flux after growth factor stimulation. For a given stimulus, when GIV levels are high, cAMP levels are low, and vice versa. In doing so, GIV modulates cAMP via mechanisms distinct from the two most often targeted classes of cAMP modulators, GPCRs and PDEs.
Cellular levels of the versatile second messenger, cyclic-(c)AMP are regulated by the antagonistic actions of the canonical G protein!adenylyl cyclase pathway that is initiated by G-protein-coupled receptors (GPCRs) and by phosphodiesterases (PDEs); dysregulated cAMP signaling drives many diseases, including cancers. Recently, an alternative paradigm for cAMP signaling has emerged, in which growth factor-receptor tyrosine kinases (RTKs; e.g., EGFR) access and modulate G proteins via cytosolic guanine-nucleotide exchange modulator (GEM), GIV/Girdin; dysregulation of this pathway is frequently encountered in cancers. Here we present a comprehensive network-based compartmental model for the paradigm of GEM-dependent signaling that reveals unforeseen crosstalk and network dynamics between upstream events and the various feedback-loops that fine-tune the GEM action of GIV, and captures the experimentally determined dynamics of cAMP. The model also reveals that GIV acts a tunable controlvalve within the RTK!cAMP pathway; hence, it modulates cAMP via mechanisms distinct from the two most-often targeted classes of cAMP modulators, GPCRs and PDEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.