We extend the applicability of a cubically convergent nonlinear system solver using Lipschitz continuous first-order Fréchet derivative in Banach spaces. This analysis avoids the usual application of Taylor expansion in convergence analysis and extends the applicability of the scheme by applying the technique based on the first-order derivative only. Also, our study provides the radius of convergence ball and computable error bounds along with the uniqueness of the solution. Furthermore, the generalization of this analysis using Hölder condition is provided. Various numerical tests confirm that our analysis produces better results and it is useful in solving such problems where previous methods can not be implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.