BackgroundSalmonella enterica serovar Enteritidis infections are known to exhibit worldwide prevalence with increased morbidity and mortality. The conventional strategies like antibiotic therapy and vaccination have not only proved to be of sub-optimal efficacy but also led to the development of multidrug resistant strains of Salmonella. Antimicrobial activities of probiotics against various enteropathogens and other health promoting effects have assumed greater significance in recent years. The present study aims to evaluate the efficacy of a Lactobacillus plantarum strain (KSBT 56, isolated from a traditional food product of India), in preventing Salmonella enterica serovar Enteritidis growth and pathogenicity in vitro.Methods and resultsThe cell free culture supernatant (CFCS) of KSBT 56 strain notably inhibited the growth of Salmonella Enteritidis without affecting the growth of other gram-positive lactic acid bacteria. The isolated KSBT 56 strain produces lactic acid similar to other standard probiotic strains like Lactobacillus plantarum MTCC 1407. The free radical production by KSBT 56 strain was studied by using sodC mutant of S. Enteritidis, which exhibited reduced growth in the presence of CFCS of the KSBT 56 strain, indicating the inhibitory activity of free radicals on the growth of S. Enteritidis. Our results also showed a significant reduction in the biofilm forming ability of Salmonella Enteritidis in the presence of the KSBT 56 strain (2 log cfu/ml, p = 0.01). Further, the anti-infective characteristics of KSBT 56 strain was validated by gentamicin protection assay which revealed 80% reduction in the invasion of Salmonella Enteritidis to HCT-116 cell line (Salmonella Enteritidis and KSBT 56 in a 1:1 ratio) and delayed addition of Salmonella Enteritidis by 1 h. Similarly, the reduced adhesion of Salmonella to the HCT-116 cells was observed along with the down regulation of hilA gene of Salmonella Pathogenicity Island 1 (SPI1) indicating that they might have acted synergistically to decrease the invasion of the pathogen into the cell line.ConclusionsKSBT 56 strain effectively inhibited the growth, invasion and the biofilm forming ability of Salmonella Enteritidis without inhibiting the growth of other Lactobacillus strains. Overall, our result suggested that KSBT 56 can be used as a potential probiotic strain with considerable beneficial effects on the host.
This paper describes the preparation and thermal conductivity characterization of solid glass micro-spheres (SGMs) filled polymer composites. SGMs of different sizes are embedded in epoxy resin to develop composites by hand layup technique. A numerical simulation of the heat-transfer within the composites is made by using finite element method (FEM). Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructure of composite materials for various SGM content ranging from 0 to about 27 vol % and the effective thermal conductivities (Keff) of the composites are estimated. Keff values are also calculated using some of the existing theoretical models. Finally, guarded heat flow meter test method is used to measure the conductivity of these composites. The simulations are compared with Keff values obtained from experiments and it is found that the FEM simulations are fairly close to the measured Keff. This study shows that the incorporation of SGMs results in reduction of conductivity of epoxy resin and thereby improves its thermal insulation capability. Further, the size and content of SGMs influence the extent of reduction of Keff. Keywords: Composites; Glass Microspheres; FEM; Thermal Conductivity; Simulation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.