A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald-like scaling, , for the RFP and the ohmic tokamak, a mixed scaling, , for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, are taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit.
a b s t r a c tIt is shown that numerical simulations of fully-developed plasma turbulence can be successfully parallelized in time using the parareal algorithm. The result is far from trivial, and even unexpected, since the exponential divergence of Lagrangian trajectories as well as the extreme sensitivity to initial conditions characteristic of turbulence set these type of simulations apart from the much simpler systems to which the parareal algorithm has been applied to this day. It is also shown that the parallel gain obtainable with this method is very promising (close to an order of magnitude for the cases and implementations described), even when it scales with the number of processors quite differently to what is typical for spatial parallelization.
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at βN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
We present HST/ACS observations of 19 nearby M subdwarfs in a search for binary systems. Other than the wide common proper motion pair LHS 2140/2139, none of our sdM and esdM targets are found to be binaries. Our survey is sensitive to equal-luminosity companions at close (2-8 AU) separations, while sub-stellar secondaries could have been detected at separations in the range of 6-30 AU. To check for wide binaries, we have compared the POSS I and II images in a field of view as large as 10 ′ ×10 ′ , but could not detect a single comoving star for any of the targets. Combining our results with those from Gizis & Reid, we have a binary fraction of 3% (1/28). Detection of a small number of M subdwarf binaries reported in the literature suggests a higher fraction than the one obtained here, probably comparable to that found for the more massive solar-type stars in the halo (13-15%). Comparison with the disk M dwarf fraction (∼25%) however suggests multiplicity to be rare among the lowest mass halo stars, implying the two populations formed under different initial conditions. The low binary fraction in our survey could be explained by selection biases. A decrease in multiplicity has been observed in the disk for masses below 0.1M ⊙ , the peak in the disk mass function (MF). The globular cluster MF is found to peak at about 0.33M ⊙ , with a decrease in the number of stars per unit mass below the peak mass. Our sample being composed of stars with masses between ∼0.2 and 0.085 M ⊙ suggests that a decrease in multiplicity similar to the disk may also be true for the halo stars, but perhaps below a mass of ∼0.3M ⊙ . A higher M subdwarf binary fraction may be obtained if the selected primaries have masses near or higher than the peak in the MF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.