Background & Aims. Chronic hepatitis (CH) has emerged as a distinct outcome of drug-induced liver injury (DILI). Combination therapy of Isoniazid (INH) and Rifampicin (RMP) which is widely used for prolonged periods can cause acute hepatotoxicity and has been also incriminated in chronic DILI. We sought evidence of the production of hepatic fibrosis on long-term INH-RMP treatment through experiments in BALB/c mice exposed to INH-RMP. Methods. A combined dose of INH (50 mg) and RMP (100 mg) per kg body weight per day was administered to mice by oral gavage, 6 days a week, for 4 to 24 weeks for the assessment of liver injury, oxidative stress, and development of hepatic fibrosis, including demonstration of changes in key fibrogenesis linked pathways and mediators. Results. Progressive increase in markers of hepatic stellate cell (HSC) activation associated with changes in matrix turnover was observed between 12 and 24 weeks of INH-RMP treatment along with the elevation of liver collagen content and significant periportal fibrosis. These were associated with concurrent apoptosis of the hepatocytes, increase in hepatic cytochrome P450 2E1 (CYP2E1), NADPH oxidase (NOX) activity, and development of hepatic oxidative stress. Conclusions. INH-RMP can activate HSC through generation of NOX-mediated oxidative stress, leading to the development of liver fibrosis.
Distinct clinical features of HBV infection have been associated with different viral genotype/subgenotype. HBV Genotype-D comprised of 10 subgenotypes, D1–D10, whose clinical implications still remain elusive. We investigated for the first-time, the virologic characteristics and cytopathic effects of four non-recombinant D-subgenotypes, D1/D2/D3/D5. Expressions of viral/host genes were evaluated in Huh7 cells transfected with full-length, linear-monomers of HBV/D-subgenotypes or pGL3-Basic vector carrying subgenotype-specific HBx. Intracellular HBV-DNA and pregenomic-RNA levels were high in D1/D2 than D3/D5. Expressions of PreC-mRNA and HBx were highest for D2 and D1 respectively, whereas PreS2/S-transcript was significantly reduced in D5. Increased apoptotic cell death and marked upregulation in caspase-3/Bax/TNF-R1/FasR/TRAIL-R1/ROS/MCP-1/IP-10/MIP-1β expression were noticed specifically in D2- and also in D3-transfected cells, while D5 resulted in over-expression of ER-stress-markers. D-subgenotype-transfected Huh7 cells were co-cultured with PBMC of healthy-donors or LX-2 cells and significant increase in pro-inflammatory cytokines in PBMC and fibrogenic-markers in LX-2 were noticed in presence of D2/D3. Further, Huh7 cells transfected with D1, in particular and also D5, displayed remarkable induction of EMT-markers and high proliferative/migratory abilities. Collectively, our results demonstrated that D2/D3 were more associated with hepatic apoptosis/inflammation/fibrosis and D1/D5 with increased risk of hepatocarcinogenesis and emphasize the need for determining HBV-subgenotype in clinical practice.
We wanted to investigate whether Isoniazid (INH) can directly stimulate activation of hepatic stellate cells (HSCs) and enhance production of collagen. Treatment of human hepatic stellate cell line LX2 with or without 5μM INH for 24 to 72 hours was performed to look into content of cytochrome P450 2E1 (CYP2E1), activity of NADPH oxidase (NOX) and intracellular oxidative stress. Protein level as well as mRNA expression of alpha smooth muscle actin (α-SMA) and collagen1A1 (COL1A1) were assessed by western blot and real time PCR. In some experiments pyrazole (PY) was pre-treated to LX2 cells to induce CYP2E1 prior to INH treatment. CYP2E1 level as well as NOX activity was gradually increased with INH treatment in LX2 cells till 72 hours. Following 72 hours of INH exposure, intracellular glutathione (GSH) level was found to be reduced compared to control (p<0.01) and showed expression of α-SMA, indicating activation of HSC. We could not found any change in collagen expression in this experimental study. Pyrazole (PY) pre-treatment to LX2 cells caused significant increase in cellular CYP2E1 content associated with increase of NOX, intracellular reactive oxygen species (ROS), and expression of α-SMA and collagen1 after INH exposure. CYP2E1 is present in insignificant amount in HSCs and INH treatment could not induce collagen expression, although altered cellular oxidant levels was observed. But in LX2 cells when CYP2E1 was over-expressed by PY, INH administration provokes oxidative stress mediated stellate cells activation along with collagen type I expression.
Background: Anti tuberculosis therapy agent isoniazid (INH) and rifampicin (RMP) injure hepatocytes. Heme oxygenase-1(HO-1) is a stress induced protein which seems to have some cellular protective function. We examined the protective function of HO-1 during INH-RMP induced cell death of hepatocytes by induction of HO-1 using hemin chloride or by silencing HO-1 gene using small interfering RNA (siRNA).
Background and Aims. The cellular mechanism of liver injury related to arsenic toxicity is ill defined. It is thought that oxidative stress and mitochondrial dysfunction may play some role in arsenic-induced liver damage. In this study, we evaluated subcellular events within the primary cultured mouse hepatocytes when exposed to inorganic arsenic. Methods. Primary cultured mouse hepatocytes were treated with 10 μM arsenic for different time periods. Reactive oxygen species (ROS) formation, functional changes of the lysosome and mitochondria, and mode of hepatocytes death were studied by laser confocal microscopy, fluorescence spectroscopy, and flow cytometry. Expression of proapoptotic member of the BCL-2 family of genes BAX and antiapoptotic BCL-2 mRNA expression were studied by real-time PCR. Cytochrome c expression was studied by Western blotting. Results. Fluorescence spectroscopy as well as flow cytometric analysis revealed that arsenic-induced formation of ROS was time dependent. Confocal microscopy showed initiation of ROS formation from periphery of the hepatocytes at 30 min of arsenic exposure that progressed to central part of the hepatocytes at 3 h of arsenic exposure. The ROS formation was found to be NADPH oxidase (NOX) dependent. This low level of intracellular ROS induced lysosomal membrane permeabilization (LMP) and subsequently released cathepsin B to the cytosol. The LMP further increased intracellular ROS which in turn triggered induction of mitochondrial permeability transition (MPT). Pretreatment of hepatocytes with LMP inhibitor bafilomycin A (BafA) significantly decreased, and LMP inducer chloroquine (ChQ) significantly increased the production of ROS suggesting that LMP preceded enhanced ROS generation in response to arsenic. MPT was accompanied with increase in BAX : BCL2 mRNA ratio resulting in upregulation of caspase 3 and increased hepatocyte apoptosis. Conclusion. Although arsenic-related oxidative liver injury is well established, neither the site of origin of ROS nor the early sequence of events in arsenic toxicity due to ROS is known. We believe that our study provides evidences elucidating the early sequence of events that culminates in the death of the mouse hepatocytes during arsenic exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.