Recent experimental data suggest that adiposity directly damages the heart by promoting ectopic deposition of triglyceride, a process known as myocardial steatosis. The goal of this study was to develop and validate proton magnetic resonance spectroscopy (
In normotensive postmenopausal women, chronic transdermal ERT decreases SND without augmenting arterial baroreflexes and causes a small but statistically significant decrease in ambulatory BP. Sympathetic inhibition is evident only with chronic rather than acute estrogen administration, implying a genomic mechanism of action. Because the effects of transdermal ERT are larger than those of oral ERT, the route of administration may be an important consideration in optimizing the beneficial effects of ERT on BP and overall cardiovascular health.
Non-technical summary In healthy individuals, blunting of the vasoconstriction caused by activation of the sympathetic nervous system is thought to be an important mechanism that optimizes blood flow to the working muscles. We show for the first time that this protective mechanism, called functional sympatholysis, is impaired in middle-aged patients with high blood pressure. We also show that this impairment can be reversed by treatment with an angiotensin receptor blocker, but not with a thiazide-type diuretic. These findings indicate that angiotensin II may augment sympathetic vasoconstriction in the active muscles of hypertensive humans, which may explain the exaggerated rise in blood pressure and blunted decline in systemic vascular resistance during exercise in this population.Abstract In healthy individuals, sympathetic vasoconstriction is markedly blunted in exercising muscles to optimize blood flow to the metabolically active muscle fibres. This protective mechanism, termed functional sympatholysis, is impaired in rat models of angiotensin-dependent hypertension. However, the relevance of these findings to human hypertension is unknown. Therefore, in 13 hypertensive and 17 normotensive subjects we measured muscle oxygenation and forearm blood flow (FBF) responses to reflex increases in sympathetic nerve activity (SNA) evoked by lower body negative pressure (LBNP) at rest and during moderate-intensity rhythmic handgrip exercise. In the normotensives, LBNP caused decreases in oxygenation and FBF (−16 ± 2% and −23 ± 4%, respectively) in resting forearm but not in exercising forearm (−1 ± 2% and −1 ± 3%, respectively; P < 0.05 vs. rest). In the hypertensives, LBNP evoked decreases in oxygenation and FBF that were similar in the resting and exercising forearm (−14 ± 2% vs. −12 ± 2% and −20 ± 3% vs. −13 ± 2%, respectively; P > 0.05), indicating impaired functional sympatholysis. In the hypertensives, SNA was unexpectedly increased by 54 ± 11% during handgrip alone. However, when SNA was experimentally increased during exercise in the normotensives, sympatholysis was unaffected. Treatment for 4 weeks with the angiotensin receptor blocker irbesartan, but not with the thiazide-type diuretic chlorthalidone, restored sympatholysis in the hypertensives. These data provide the first evidence that functional sympatholysis is impaired in hypertensive humans by a mechanism that appears to involve an angiotensin-dependent increase in sympathetic vasoconstriction in the exercising muscles.
Sympathetic vasoconstriction is normally attenuated in exercising muscles of young men and women. Recent evidence indicates that such modulation, termed functional sympatholysis, may be impaired in older men. Whether a similar impairment occurs in older women, and what role oestrogen deficiency might play in this impairment, are not known. Based on the strong positive correlation between circulating oestrogen levels and functional sympatholysis previously reported in female rats, we hypothesized that sympatholysis would be impaired in oestrogen-deficient postmenopausal women, and that this impairment would be reversed by oestrogen replacement. To test these hypotheses, we measured vasoconstrictor responses in the forearms of pre-and postmenopausal women using near infrared spectroscopy to detect decreases in muscle oxygenation in response to reflex activation of sympathetic nerves evoked by lower body negative pressure (LBNP). In eight premenopausal women, LBNP decreased muscle oxygenation by 20 ± 1% in resting forearm, but only by 3 ± 2% in exercising forearm (P < 0.05). In contrast, in eight postmenopausal women, LBNP decreased muscle oxygenation by 15 ± 3% in resting forearm, and by 12 ± 4% in exercising forearm (P > 0.05). After 1 month of transdermal oestradiol replacement in these women, the normal effect of exercise to blunt sympathetic vasoconstriction was restored (rest, −19 ± 3%; exercise, −2 ± 3%; P < 0.05). These data indicate that functional sympatholysis is impaired in oestrogen-deficient postmenopausal women. The effect of short-term unopposed oestrogen replacement to correct this impairment implicates a role for oestrogen in the sympathetic neural control of muscle haemodynamics during exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.