The binding of polypeptide growth factors to their appropriate cell surface transmembrane receptors triggers numerous biochemical responses, including the transcriptional activation of specific genes. We have used a differential display approach to identify fibroblast growth factor-1-inducible genes in murine NIH 3T3 cells. Here, we report that the fibroblast growth factorinducible-14 (Fn14) gene is a growth factor-regulated, immediate-early response gene expressed in a developmental stage-and adult tissue-specific manner in vivo. This gene, located on mouse chromosome 17, is predicted to encode an 129-amino acid type Ia membrane protein with no significant sequence similarity to any known protein. We have used two experimental approaches, direct fluorescence microscopy and immunoprecipitation analysis of biotinylated cell surface proteins, to demonstrate that Fn14 is located on the plasma membrane. To examine the biological consequences of constitutive Fn14 expression, we isolated NIH 3T3 cell lines expressing variable levels of epitope-tagged Fn14 and analyzed their phenotypic properties in vitro. These experiments revealed that Fn14 expression decreased cellular adhesion to the extracellular matrix proteins fibronectin and vitronectin and also reduced serum-stimulated cell growth and migration. These results indicate that Fn14 is a novel plasma membrane-spanning molecule that may play a role in cell-matrix interactions.Complex cellular processes such as proliferation, migration, differentiation, and apoptosis are regulated in part by a diverse group of molecules known as polypeptide growth factors. These factors act by binding and thereby activating specific transmembrane receptor tyrosine kinases. The activation of cell surface receptors by polypeptide ligands triggers downstream intracellular events, including the stimulation of protein phosphorylation cascades and the transcriptional activation of numerous genes (1, 2). Many mitogen-inducible genes have been identified, and they encode a diverse group of proteins including transcription factors, protein kinases and phosphatases, cell cycle regulators, and cytoskeletal and extracellular matrix proteins (2, 3). A recent study using cDNA microarray technology has demonstrated that Ͼ500 genes are transcriptionally activated after serum stimulation of quiescent human fibroblasts and that a subset of these genes encode proteins implicated in the wound healing process in vivo (3).Our laboratory has been studying fibroblast growth factor-1 (FGF-1) 1 -regulated gene expression in murine NIH 3T3 cells. FGF-1 (also referred to as acidic FGF) is one of the most extensively characterized members of the FGF family of heparin-binding proteins (4 -6). It is a potent mitogenic, chemotactic, angiogenic, and neurotrophic factor both in vitro and in vivo. These cellular responses are mediated via high affinity binding to a family of related membrane-spanning tyrosine kinase receptors (4 -6). We have shown by Northern blot hybridization analysis that FGF-1 stimulation of quies...
Chronic incubation of 3T3-L1 adipocytes with tumor necrosis factor (TNF) induces a state of insulin resistance characterized by a diminished ability of insulin to induce phosphorylation of the beta subunit of its own receptor and insulin receptor substrate 1 (IRS-1). When adipocytes are briefly pretreated with TNF and then stimulated with insulin, tyrosine phosphorylation of IRS-1 increases above the level induced by insulin alone. By itself, TNF induces the time-dependent tyrosine phosphorylation of proteins in 3T3-L1 adipocytes. Among these is IRS-1, a docking protein with tyrosine phosphorylation sites that bind cytoplasmic signaling molecules that contain Src homology 2 (SH2) domains. TNF stimulation of 3T3-L1 adipocytes also promotes the association of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) with IRS-1 and also its tyrosine phosphorylation. In murine 3T3-L1 adipocytes, IRS-1 and PI 3-kinase phosphorylation and the association of these proteins are promoted by murine TNF, which interacts with the type 1 and type 2 TNF receptors. Human TNF, which binds to the murine type 1 TNF receptor selectively, also promotes IRS-1 phosphorylation and binding of IRS-1 to PI 3-kinase. This is the first demonstration that a member of the TNF/nerve growth factor receptor superfamily can use an IRS-1 signaling system as a component of its cellular response and provides a mechanism through which TNF receptors may engage downstream elements in signaling pathways.
Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase implicated in cellular osmoregulation and detoxification. Two distinct murine genes have been identified that are predicted to encode proteins with significant amino acid sequence identity with mouse AR: mouse vas deferens protein and fibroblast growth factor (FGF)-regulated-1 protein (FR-1). Here we report that the AR and FR-1 genes are differentially regulated in NIH 3T3 fibroblasts. FGF-1 stimulation of quiescent cells induces both AR and FR-1 mRNA levels, but the effect on FR-1 mRNA expression is significantly greater. FGF-1 treatment also increases FR-1 protein expression, as determined by Western-blot analysis using FR-1-specific polyclonal antiserum. Calf serum stimulation of quiescent cells increases AR mRNA expression but not FR-1 mRNA expression. Finally, when NIH 3T3 cells are grown in hypertonic medium, AR mRNA levels are significantly increased whereas FR-1 mRNA levels are only slightly up-regulated. These results indicate that the AR and FR-1 genes are differentially regulated in murine fibroblasts by two different growth-promoting agents and by hyperosmotic stress. Therefore these structurally related enzymes may have at least some distinct cellular functions; for example, although both AR and FR-1 activity may be important for the metabolic changes associated with cellular proliferation, AR may be the primary aldo-keto reductase involved in cellular osmoregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.