Recent advances in analytical techniques have allowed cetacean pregnancy status to be diagnosed using reproductive hormones from biopsy samples. We tested the efficacy of blubber progesterone assays for diagnosing pregnancy in humpback whales, calculated pregnancy rates and examined the relationship between pregnancy and stable isotope ratios for these whales.
Estimating the abundance of long-lived, migratory animals is challenging but essential for managing populations. We provide the first abundance estimates of endangered humpback whales Megaptera novaeangliae from their breeding grounds in Oceania, South Pacific. Using fluke photo-identification (1999−2004, n = 660 individuals) and microsatellite genotypes (1999−2005, n = 840 individuals), we estimated abundance with open capture-recapture statistical models. Total Oceania abundance and trends were estimated from 4 primary and 5 secondary sampling sites across the region. Sex-specific genotype data enabled us to account for the difference in capturability of males and females, by doubling male-specific estimates of abundance derived from genotypes. Abundance estimates were congruent between primary-and secondaryregion data sets, suggesting that the primary regions are representative of all Oceania. The best estimate of total abundance was 4329 whales (3345−5313) in 2005, from a sex-specific POPAN super-population model, which includes resident whales and those migrating through the surveyed areas. A doubled-male POPAN abundance estimate from 2003 (n = 2941, 95% CI = 1648−4234) was considered the most plausible for the 4 primary survey areas and was similar to the 2003 doubled-male estimate derived from Pradel capture probabilities (n = 2952, 95% CI = 2043−4325). Our results confirm that Oceania is the least abundant humpback whale breeding population in the southern hemisphere. Pradel models showed no significant trend in abundance, which contradicts the recovery seen in most other populations throughout the world. Thus we suggest that the whales in this area warrant continued study and management attention.KEY WORDS: Megaptera novaeangliae · South Pacific · Capture-recapture · Genotyping · Endangered speciesResale or republication not permitted without written consent of the publisher
Genetic data are often critical for defining populations for management purposes (e.g., identifying geographic boundaries or diagnostic characters for genetically discrete subunits) but can be called into question by both scientific and legal review. This can result in reversed or delayed implementation of management actions. We discuss methods for data quality control and quality analysis and describe examples of steps applied to 2 of the most common types of genetic data, mitochondrial DNA sequences, and microsatellite genotypes. These steps can serve both as guides to conservation geneticists and as an initial protocol for managers to determine whether genetic data will hold up against legal and scientific challenges. In addition, we suggest types of data and quality measures that should be reported as supplementary materials to published reports. These supplementary data serve to reduce the occurrence of legal and conservation controversies and improve reproducibility over time in population genetics studies where genetic monitoring is likely to play an increasing role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.