The bioavailability of organic contaminants to the degrading bacteria is a major limitation to efficient bioremediation of sites contaminated with hydrophobic pollutants. Such limitation of bioavailability can be overcome by steady-state biofilm-based reactor. The aim of this study was to examine the effect of such multicellular aggregation by naturally existing oil-degrading bacteria on crude oil degradation. Microorganisms, capable of utilizing crude oil as sole carbon source, were isolated from river, estuary and sea-water samples. Biochemical and 16S rDNA analysis of the best degraders of the three sources was found to belong to the Pseudomonas species. Interestingly, one of the isolates was found to be close to Pseudomonas otitidis family which is not reported yet as a degrader of crude oil. Biodegradation of crude oil was estimated by gas chromatography, and biofilm formation near oil-water interface was quantified by confocal laser scanning microscopy. Biofilm supported batches of the isolated Pseudomonas species were able to degrade crude oil much readily and extensively than the planktonic counterparts. Volumetric and topographic analysis revealed that biofilms formed in presence of crude oil accumulate higher biomass with greater thickness compared to the biofilms produced in presence of glucose as sole carbon source.
Regulation of microtubule dynamics depends on stochastic balance between polymerization and severing process which lead to differential spatiotemporal abundance and distribution of microtubules during cell development, differentiation, and morphogenesis. Microtubule severing by a conserved AAA family protein Katanin has emerged as an important microtubule architecture modulating process in cellular functions like division, migration, shaping and so on. Regulated by several factors, Katanin manifests connective crosstalks in network motifs in regulation of anisotropic severing pattern of microtubule protofilaments in cell type and stage dependent way. Mechanisms of structural disintegration of microtubules by Katanin involve heterogeneous mechanochemical processes and sensitivity of microtubules to Katanin plays significant roles in mitosis/meiosis, neurogenesis, cilia/flagella formation, cell wall development and so on. Deregulated and uncoordinated expression of Katanin has been shown to have implications in pathophysiological conditions. In this paper, we highlight mechanistic models and regulations of microtubule severing by Katanin in context of structure and various functions of Katanin in different organisms.
Pseudomonas sp. has long been known for production of a wide range of secondary metabolites during late exponential and stationary phases of growth. Phenazine derivatives constitute a large group of secondary metabolites produced by microorganisms including Pseudomonas sp. Phenazine 1,6-di-carboxylic acid (PDC) is one of such metabolites and has been debated for its origin from Pseudomonas sp. The present study describes purification and characterization of PDC isolated from culture of a natural isolate of Pseudomonas sp. HRW.1-S3 while grown in presence of crude oil as sole carbon source. The isolated PDC was tested for its effect on biofilm formation by another environmental isolate of Pseudomonas sp. DSW.1-S4 which lacks the ability to produce any phenazine compound. PDC showed profound effect on both planktonic as well as biofilm mode of growth of DSW.1-S4 at concentrations between 5 and 20 μM. Interestingly, PDC showed substantial cytotoxicity against three cancer cell lines and against both Gram-positive and Gram-negative bacteria. Thus, the present study not only opens an avenue to understand interspecific cooperation between Pseudomonas species which may lead its applicability in bioremediation, but also it signifies the scope of future investigation on PDC for its therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.