In this work, we performed atomistic simulations to study the structural properties of mixed self-assembled monolayers (SAM) of hydrophilic and hydrophobic alkylthiols, with two different chain lengths (C5 and C11), on gold nanoparticles (NPs) at three different arrangements, namely: random, patchy, and Janus domains. In particular, we report the effect of mixing of thiols with unequal carbon chain lengths (C5 and C11) at three different arrangements on the structural properties and hydration of SAMs. Our simulation study reveals that the arrangement of thiols having unequal carbon chains in mixed SAMs is a key parameter in deciding the hydrophilicity of the coated gold NPs. Thus, our findings suggest that the hydration of the SAMs-protected gold NPs is not only dependent on the molecular composition of the thiols, but also on the organization of their mixing. In addition, our results show that the bending of longer thiols, when these are mixed with shorter thiols, depends on the arrangement of thiols as well as the chemical nature of their terminal groups.
Studying equilibrium properties of polymers in solution by atomistic simulations is a challenging task as the available computation time is often not sufficient to ensure representative sampling of the phase space. One approach to tackle this problem is to create a simulation scenario which is simple enough to enable adequate sampling of equilibrium states while it retains the essential parts of the physics of the polymer in solution. In this work, we present and test such a scenario, which is designed for studying whether a given
All-atom molecular dynamics simulations are conducted to understand the structural and dynamical behavior of self-assembled monolayer of n-alkanols on a mica surface. In particular, we report the effect of increasing carbon chain length (C 1 − C 10 ) on the self-assembly, surface diffusion, and preferential tilting of n-alkanol monolayer, for monolayer surface coverage ranging from 6 × 10 −5 to 3.54 × 10 −3 mol/ m 2 . The adsorption phenomena typically follow the Langmuir adsorption isotherm. However, the maximum adsorption is observed for n-hexanol, and it drops with further increase in the chain length. The surface diffusion coefficient, D s , within monolayer, is nonmonotonic in nature. The maximum value of D s decreases with increasing carbon chain length, with an exception of methanol owing to its preferential attachment with the cage of mica due to the presence of K + . The behavior of D s is clearly explained using instantaneous autocorrelation function of hydrogen bonds with the surface. Further, D s , is found to vary inversely proportional to the lifetime of hydrogen bond of alkanols with the surface. Most probable tilt angle of molecules with increasing alkyl group (C 1 , C 2 , C 4 , and C 6 ) is in the order 71°> 38°> 29°> 19°. However, for octanol we observed molecules to attain a preferential tilt angle of 80°. The self-assembly behavior of lower alkanols, i.e., C 1 −C 6 is contrary to that seen for higher alkanols.
In this work, the effect of temperature on the contact angle of a water droplet on grafted thermo-responsive poly-(N-isopropylacrylamide) (PNIPAAm) polymer brushes is studied using all-atom molecular dynamics simulations in the temperature range of 270-330 K. A shift from 55° to 65° in contact angle values is observed as the temperature increases from 300 K to 310 K, which is in line with the experimental reports. The behavior of a water droplet on PNIPAAm brushes is analyzed using hydrogen bond analysis, water diffusion, radial distribution functions, the potential of mean force, excess entropy and the second virial coefficient (B2). The thermo-responsive behavior of PNIPAAm brushes, quantified using the excess entropy and B2 of PNIPAAm-water and water-water interactions, is mainly governed by polymer-water interactions. In particular, the excess entropy and B2 of PNIPAAm resulting from the PNIPAAm-water interactions are found to increase with increasing temperature. The dehydration of PNIPAAm brushes and the increase in the contact angle of water were confirmed to be entropy driven processes.
Janus particles provide an asymmetry in structure, which can impart diverse functionalities leading to immense importance in various applications, ranging from targeted delivery to interfacial phenomena, including catalysis, electronics, and optics. In this work, we present results of a molecular dynamics study of the growth mechanism of coating on gold nanoparticles (AuNPs) from droplets of n-alkyl thiols with different chain lengths (C5 and C11) and terminal groups (CH and COOH). The effect of chain lengths and functional groups on the formation of a monolayer of alkyl thiols on AuNPs is investigated. A two-step mechanism, initiated by the binding of the droplet to the nanoparticle surface with a time constant on the order of ∼1 ns, followed by the diffusion-driven growth with a larger time constant (on the order of 100 ns), is shown to capture the growth dynamics of the monolayer. It is observed that the time required for complete wetting increases with an increase in the chain length. Moreover, the monolayer formation is slowed down in the presence of carboxyl groups because of strong hydrogen bonding. The kinetics of the n-alkyl thiols coating on the nanoparticles is found to be independent of the droplet size but carboxyl-terminated thiols spread more with increasing droplet size. Furthermore, different time constants for different chains and functional groups yield Janus coating when two droplets of alkyl thiols with different terminal groups are allowed to form monolayers on the nanoparticle. The Janus balance (β) for different combinations of alkyl thiols and nanoparticle sizes varies in the range of 0.42-0.71.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.