Control of many infectious diseases relies on the detection of clinical cases and the isolation, removal, or treatment of cases and their contacts. The success of such "reactive" strategies is influenced by the fraction of transmission occurring before signs appear. We performed experimental studies of foot-and-mouth disease transmission in cattle and estimated this fraction at less than half the value expected from detecting virus in body fluids, the standard proxy measure of infectiousness. This is because the infectious period is shorter (mean 1.7 days) than currently realized, and animals are not infectious until, on average, 0.5 days after clinical signs appear. These results imply that controversial preemptive control measures may be unnecessary; instead, efforts should be directed at early detection of infection and rapid intervention.
Abstract. A panel of 36 sera has been assembled from experimental cattle that had been infected by inoculation or contact exposure with 4 serotypes of foot-and-mouth disease virus (FMDV) with or without prior vaccination. Virus replication and persistence had been characterized in all of the animals. The proportion of the sera scored positive by 5 tests for antibodies to the nonstructural proteins of FMDV varied, suggesting that the panel can discriminate between the sensitivity with which such tests are able to identify infected cattle. Use of this panel will help in assessment of new tests and quality control of existing methods.
Infection of cattle with foot-and-mouth disease virus (FMDV) results in the development of long-term protective antibody responses. In contrast, inactivated antigen vaccines fail to induce long-term protective immunity. Differences between susceptible species have also been observed during infection with FMDV, with cattle often developing persistent infections whilst pigs develop more severe symptoms and excrete higher levels of virus. This study examined the early immune response to FMDV in naïve cattle after in-contact challenge. Cattle exposed to FMDV were found to be viraemic and produced neutralising antibody, consistent with previous reports. In contrast to previous studies in pigs these cattle did not develop leucopenia, and the proliferative responses of peripheral blood mononuclear cells to either mitogen or third party antigen were not suppressed. Low levels of type 1 interferon and IL-10 were detected in the circulation. Taken together, these results suggest that there was no generalised immunosuppression during the acute phase of FMDV infection in cattle.
During a field study in Zimbabwe, clinical specimens were collected from 403 cattle in six herds, in which the history of foot-and-mouth disease (FMD) vaccination and infection appeared to be known with some certainty. Five herds had reported outbreaks of disease one to five months previously but clinical FMD had not been observed in the sixth herd. A trivalent vaccine (South African Territories [SAT] types 1, 2 and 3) had been used in some of the herds at various times either before and/or after the recent outbreaks of FMD. The primary aim of this study was to evaluate the performance of serological tests for the detection of SAT-type FMD virus infection, particularly elisas for antibodies to non-structural proteins (NSPs) of FMD virus and solid phase competition ELISAS (SPCEs) for serotypes SAT1 and SAT2. Secondary aims were to examine NSP seroconversion rates in cattle that had been exposed to infection and to compare virus detection rates by virus isolation and real-time reverse transcriptase-PCR (rtRT-PCR) tests on both oesophagopharyngeal fluids and nasopharyngeal brush swabbings. In addition, the hooves of sampled animals were examined for growth arrest lines as clinical evidence of FMD convalescence. Laboratory tests provided evidence of FMD virus infection in all six herds; SAT2 viruses were isolated from oesophagopharyngeal fluids collected from two herds in northern Zimbabwe, and SAT1 viruses were isolated from three herds in southern Zimbabwe. Optimised rtRT-PCR was more sensitive than virus isolation at detecting FMD virus persistence and when the results of the two methods were combined for oesophagopharyngeal fluids, between 12 and 35 per cent of the cattle sampled in the convalescent herds were deemed to be carriers. In contrast, nasopharyngeal swabs yielded only two virus-positive specimens. The overall seroprevalence in the five affected herds varied with the different NSPS from 56 per cent to 75 per cent, compared with 81 per cent and 91 per cent by homologous SPCE and virus neutralisation tests respectively. However, if serological test results were considered only for the cattle in which persistent infection with FMD virus had been demonstrated, 70 to 90 per cent scored seropositive in the different NSPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.