Graphene quantum dots (GQDs) are an allotrope of carbon with a planar surface amenable to functionalization and nanoscale dimensions that confer photoluminescence. Collectively, these properties render GQDs an advantageous platform for nanobiotechnology applications, including optical biosensing and delivery. Towards this end, noncovalent functionalization offers a route to reversibly modify and preserve the pristine GQD substrate, however, a clear paradigm has yet to be realized. Herein, we demonstrate the feasibility of noncovalent polymer adsorption to GQD surfaces, with a specific focus on single-stranded DNA (ssDNA). We study how GQD oxidation level affects the propensity for polymer adsorption by synthesizing and characterizing four types of GQD substrates ranging ~60-fold in oxidation level, then investigating noncovalent polymer association to these substrates. Adsorption of ssDNA quenches intrinsic GQD fluorescence by 31.5% for low-oxidation GQDs and enables aqueous dispersion of otherwise insoluble no-oxidation GQDs. ssDNA-GQD complexation is confirmed by atomic force microscopy, by inducing ssDNA desorption, and with molecular dynamics simulations. ssDNA is determined to adsorb strongly to no-oxidation GQDs, weakly to low-oxidation GQDs, and not at all for heavily oxidized GQDs. Finally, we reveal the generality of the adsorption platform and assess how the GQD system is tunable by modifying polymer sequence and type. Graphene is a two-dimensional hexagonal carbon lattice that possesses a host of unique properties, including exceptional electronic conductivity, mechanical strength, and adsorptive capacity 1-3. However, graphene is a zero-bandgap material, and this lack of bandgap limits its use in semiconducting applications 4. To engineer a bandgap, the lateral dimensions of graphene must be restricted to the nanoscale, resulting in spatially confined structures such as graphene quantum dots (GQDs) 5. The bandgap of GQDs is attributed to quantum confinement 6,7 , edge effects 8 , and localized electron-hole pairs 9. Accordingly, this gives rise to tunable fluorescence properties based upon GQD size, shape, and exogenous atomic composition. In comparison to conventional semiconductor quantum dots, GQDs are an inexpensive and less environmentally harmful alternative 10,11. Moreover, for biological applications, GQDs are a low toxicity, biocompatible, and photostable material that offer a large surface-to-volume ratio for bioconjugation 11,12. Exploiting the distinct material properties of graphene often requires or benefits from exogenous functionalization. The predominant mechanism for graphene or graphene oxide (GO) functionalization is via covalent linkage to a polymer. However, noncovalent adsorption of polymers to carbon substrates is desirable in applications requiring reversibility for solution-based manipulation and tunable ligand exchange 13 , and preservation of the pristine atomic structure to maintain nanoscale graphene's fluorescence characteristics 14. Functionalization of graphene and GO ...
Aim: To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite. Methods: A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and neuronal differentiation. Results: PCL with exiguous graphene demonstrated an ideal nanotopography with an unprecedented combination of guidance stimuli and substrate cues, aiding the enhanced differentiation of mesenchymal stem cells into dopaminergic neurons. These newly differentiated neurons were seen to exhibit unique neuronal arborization, enhanced intracellular Ca2+ influx and dopamine secretion. Conclusion: Having cost-effective fabrication and room-temperature storage, the PCL-G nanocomposites could pave the way for enhanced neuronal differentiation, thereby opening a new horizon for an array of applications in neural regenerative medicine.
Graphene quantum dots (GQDs) are carbon-based, zero-dimensional nanomaterials and unique due to their astonishing optical, electronic, chemical, and biological properties. Chemical, photochemical, and biochemical properties of GQDs are intensely being explored for bioimaging, biosensing, and drug delivery. The synthesis of GQDs by top-down and bottom-up approaches, their chemical functionalization, bandgap engineering, and biomedical applications are reviewed here. Current challenges and future perspectives of GQDs are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.