BackgroundWe have previously demonstrated an aberrant overexpression of the microtubule-associated protein TPX2 in colon cancer using a genome-wide gene expression profiling analysis. Here, we aim to investigate its expression pattern, clinical significance, and biological function in colon cancer.MethodsTPX2 expression was analyzed in human colon cancer cell lines and tumor samples. The effect of TPX2 on cell proliferation, tumorigenesis, and metastasis was examined in vitro and in vivo.ResultsTPX2 was overexpressed in 129 of the 203 (60.8%) colon cancer metastatic lesions, with the expression being significantly higher than that in primary cancerous tissue and normal colon mucosa. Overexpression of TPX2 was significantly associated with clinical staging, vessel invasion, and metastasis. In survival analyses, patients with TPX2 overexpression had worse overall survival and metastasis free survival, suggesting that deregulation of TPX2 may contribute to the metastasis of colon cancer. Consistent with this, suppression of TPX2 expression inhibited proliferation and tumorigenicity of colon cancer cells both in vitro and in vivo. Strikingly, we found that TPX2 knockdown significantly attenuated the migration and invasion ability of colon cancer cells, which was further shown to be mechanistically associated with AKT-mediated MMP2 activity.ConclusionsThese findings suggest that TPX2 plays an important role in promoting tumorigenesis and metastasis of human colon cancer, and may represent a novel prognostic biomarker and therapeutic target for the disease.
The incidence of sporadic young-onset colorectal cancer (yCRC) is increasing. A significant knowledge gap exists in the gut microbiota and its diagnostic value for yCRC patients. Through 16S rRNA gene sequencing, 728 samples are collected to identify microbial markers, and an independent cohort of 310 samples is used to validate the results. Furthermore, species-level and functional analysis are performed by metagenome sequencing using 200 samples. Gut microbial diversity is increased in yCRC. Flavonifractor plautii is an important bacterial species in yCRC, while genus Streptococcus contains the key phylotype in the old-onset colorectal cancer. Functional analysis reveals that yCRC has unique characteristics of bacterial metabolism characterized by the dominance of DNA binding and RNA-dependent DNA biosynthetic process. The random forest classifier model achieves a powerful classification potential. This study highlights the potential of the gut microbiota biomarkers as a promising non-invasive tool for the accurate detection and distinction of individuals with yCRC.
Long noncoding RNAs (lncRNAs) have recently emerged as a major class of regulatory molecules, which were involved in a broad range of biological processes and complex diseases. Research on lncRNAs may shed light on tumorigenesis and progression of colorectal cancer (CRC). The purpose of the present study was to identify lncRNAs correlated with CRC and then investigate their potential functions. We selected 92 patients for this prospective study and then collected the tumor samples and clinical records. First, the global lncRNA expression profiles in tumor and adjacent normal tissues of patients with non-metastatic CRC and patients with metastatic CRC were measured by microarray assay. Then, a noteworthy lncRNAs RP11-462C24.1 whose function was previously unknown was explored in detail on the aspect of the association of its expression level and clinicopathological features of CRC and patients’ survival. We found that RP11-462C24.1 expression level was lower in cancer tissues compared with adjacent normal samples (P < 0.001). Furthermore, its expression level was lower in CRC patients with metastasis than those without metastasis (P = 0.049). That is, RP11-462C24.1 expression level decreased as the malignant degree of CRC increased. In addition, low expression of RP11-462C24.1 significantly correlated with more distant metastasis (P = 0.011). The areas under ROC curves were 0.78 and 0.65 for RP11-462C24.1, distinguishing CRC from normal tissue and distinguishing CRC without metastasis from CRC with metastasis, respectively. Multivariate analysis identified that RP11-462C24.1 was an independent predictor for patients prognosis (P = 0.005). Furthermore, Kaplan–Meier analysis showed that patients with low expression of RP11-462C24.1 had a poor disease-free survival (P < 0.001). This is the first study that correlates RP11-462C24.1 expression profile with malignancy grade in human CRC. Our results showed that RP11-462C24.1 could be a potential novel prognostic marker for CRC, and thus, provided a new strategy for CRC diagnosis. Meanwhile, our findings indicated the potential roles of RP11-462C24.1 in tumorigenesis and progression of CRC, which gave a clue for future studies.Electronic supplementary materialThe online version of this article (doi:10.1007/s12032-014-0031-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.