[1] The impact of declining sea ice in amplifying surface air temperatures (SAT) over the Arctic Ocean is readily visible, and this "Arctic amplification" will become more pronounced as more sea ice is lost in the coming decades. The effect of sea ice loss on atmospheric temperatures and circulation patterns is of utmost significance as these changes will affect the terrestrial climate. Land-surface snow is vulnerable to these changes; hence, we search for any link between changes in Arctic sea ice and Northern Hemisphere snow cover. Analyses of observational data sets suggest that the increasing snow cover over Siberia during fall and early winter is correlated with the decreasing September Arctic sea ice over the Pacific sector. We also examine modeled covariance between sea ice and snow using historical and future simulations of the Community Climate System Model (CCSM3). Results indicate the emergence of a Siberian snow signal during the last half of the 21st century most strongly during late winter. Moreover, CCSM3 future simulations show diminishment of snow at a hemispheric scale outside of the Siberian region, which is correlated with the loss of Arctic sea ice. These results indicate that we may be seeing the first, albeit weak, signs of "Arctic amplification" on the terrestrial Arctic snowpack; that only a weak and therefore inconclusive signal would be expected at this time; and that the signal should strengthen over the coming decades.
Recent literature has shown that surface air temperature (SAT) in many high elevation regions, including the Tibetan Plateau (TP) has been increasing at a faster rate than at their lower elevation counterparts. We investigate projected future changes in SAT in the TP and the surrounding high elevation regions (between 25°-45°N and 50°-120°E) and the potential role snow-albedo feedback may have on amplified warming there. We use the Community Climate System Model version 4 (CCSM4) and Geophysical Fluid Dynamics Laboratory (GFDL) model which have different spatial resolutions as well as different climate sensitivities. We find that surface albedo (SA) decreases more at higher elevations than at lower elevations owing to the retreat of the 0°C isotherm and the associated retreat of the snow line. Both models clearly show amplified warming over Central Asian mountains, the Himalayas, the Karakoram and Pamir during spring. Our results suggest that the decrease of SA and the associated increase in absorbed solar radiation (ASR) owing to the loss of snowpack play a significant role in triggering the warming over the same regions. Decreasing cloud cover in spring also contributes to an increase in ASR over some of these regions in CCSM4. Although the increase in SAT and the decrease in SA are greater in GFDL than CCSM4, the sensitivity of SAT to changes in SA is the same at the highest elevations for both models during spring; this suggests that the climate sensitivity between models may differ, in part, owing to their corresponding treatments of snow cover, snow melt and the associated snow/albedo feedback.
[1] One of the major climatic changes apparent over the Arctic Ocean has been the amplified rate at which air temperature has been increasing relative to the global mean. There are multiple factors which play roles in this amplification, including changes in sea ice/albedo, atmospheric circulation, clouds, and water vapor. We investigate the positive feedback on temperature caused by increasing downward longwave radiation flux (DLF) associated with increasing atmospheric precipitable water (PW). The Japanese 25-year Reanalysis and ERA-Interim reanalysis are used to examine the role of the DLF/PW component of the water vapor feedback loop on the enhanced warming in the Arctic between 1979 and 2011. We find a nonlinear relationship between DLF and PW, which suggests that the sensitivity of DLF to changes in PW varies by season, with the highest in winter and the lowest in summer. The positive trends in DLF and PW are widespread over the Arctic during autumn and spring but are centered mainly over the Atlantic sector in winter. The strength of the PW feedback loop depends on both the sensitivity of DLF to changes in PW and the change in PW during 1979-2011. If, in the future, PW were to increase significantly during winter in the central and Pacific sectors of the Arctic, there could be an expansion of Arctic amplification during winter. We also examine the effect of changes in cloud cover and find that such changes account for a much smaller proportion of the changes in DLF than does PW.
[1] The loss of Arctic sea ice has wide-ranging impacts, some of which are readily apparent and some of which remain obscure. For example, recent observational studies suggest that terrestrial snow cover may be affected by decreasing sea ice. Here, we examine a possible causal link between Arctic sea ice and Siberian snow cover during the past 3 decades using a suite of experiments with the National Center for Atmospheric Research Community Atmospheric Model version 3. The experiments were designed to isolate the influence of surface conditions within the Arctic Ocean from other forcing agents such as low-latitude sea surface temperatures and direct radiative effects of increasing greenhouse gases. Only those experiments that include the observed evolution of Arctic sea ice and sea surface temperatures result in increased snow depth over Siberia, while those that maintain climatological values for Arctic Ocean conditions result in no snow signal over Siberia. In the former, Siberian precipitation and air temperature both increase, but because surface air temperatures remain below freezing during most months, the snowpack thickens over this region. These results suggest that Arctic Ocean surface forcing is necessary and sufficient to induce a Siberian snow signal, and that other forcings in combination can modulate the strength and geographic extent of the response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.