Image-to-image translation has made great strides in recent years, with current techniques being able to handle unpaired training images and to account for the multimodality of the translation problem. Despite this, most methods treat the image as a whole, which makes the results they produce for content-rich scenes less realistic. In this paper, we introduce a Detection-based Unsupervised Image-to-image Translation (DUNIT) approach that explicitly accounts for the object instances in the translation process. To this end, we extract separate representations for the global image and for the instances, which we then fuse into a common representation from which we generate the translated image. This allows us to preserve the detailed content of object instances, while still modeling the fact that we aim to produce an image of a single consistent scene. We introduce an instance consistency loss to maintain the coherence between the detections. Furthermore, by incorporating a detector into our architecture, we can still exploit object instances at test time. As evidenced by our experiments, this allows us to outperform the state-of-the-art unsupervised image-to-image translation methods. Furthermore, our approach can also be used as an unsupervised domain adaptation strategy for object detection, and it also achieves state-of-the-art performance on this task.
We introduce the first multitasking vision transformer adapters that learn generalizable task affinities which can be applied to novel tasks and domains. Integrated into an off-the-shelf vision transformer backbone, our adapters can simultaneously solve multiple dense vision tasks in a parameter-efficient manner, unlike existing multitasking transformers that are parametrically expensive. In contrast to concurrent methods, we do not require retraining or fine-tuning whenever a new task or domain is added. We introduce a task-adapted attention mechanism within our adapter framework that combines gradient-based task similarities with attention-based ones. The learned task affinities generalize to the following settings: zero-shot task transfer, unsupervised domain adaptation, and generalization without fine-tuning to novel domains. We demonstrate that our approach outperforms not only the existing convolutional neural network-based multitasking methods but also the vision transformer-based ones. Our project page is at https://ivrl.github.io/VTAGML.
The analysis of leukocyte images has drawn interest from fields of both medicine and computer vision for quite some time where different techniques have been applied to automate the process of manual analysis and classification of such images. Manual analysis of blood samples to identify leukocytes is time-consuming and susceptible to error due to the different morphological features of the cells. In this article, the nature-inspired plant growth simulation algorithm has been applied to optimize the image processing technique of object localization of medical images of leukocytes. This paper presents a random bionic algorithm for the automated detection of white blood cells embedded in cluttered smear and stained images of blood samples that uses a fitness function that matches the resemblances of the generated candidate solution to an actual leukocyte. The set of candidate solutions evolves via successive iterations as the proposed algorithm proceeds, guaranteeing their fit with the actual leukocytes outlined in the edge map of the image. The higher precision and sensitivity of the proposed scheme from the existing methods is validated with the experimental results of blood cell images. The proposed method reduces the feasible sets of growth points in each iteration, thereby reducing the required run time of load flow, objective function evaluation, thus reaching the goal state in minimum time and within the desired constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.