Background Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2–4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. Methods We customized Illumina’s Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. Results Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g.IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. Conclusions In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.
Background: Metabolomic analysis is commonly used to understand the biological underpinning of diseases such as obesity. However, our knowledge of gut metabolites related to weight outcomes in young children is currently limited.Objectives: To (1) explore the relationships between metabolites and child weight outcomes, (2) determine the potential effect of covariates (e.g., child's diet, maternal health/habits during pregnancy, etc.) in the relationship between metabolites and child weight outcomes, and (3) explore the relationship between selected gut metabolites and gut microbiota abundance.Methods: Using 1 H-NMR, we quantified 30 metabolites from stool samples of 170 two-year-old children. To identify metabolites and covariates associated with children's weight outcomes (BMI [weight/height 2 ], BMI z-score [BMI adjusted for age and sex], and growth index [weight/height]), we analysed the 1 H-NMR data, along with 20 covariates recorded on children and mothers, using LASSO and best subset selection regression techniques. Previously characterized microbiota community Debmalya Nandy and Sarah J. C. Craig contributed equally to this study.
When analyzing large datasets from high-throughput technologies, researchers often encounter missing quantitative measurements, which are particularly frequent in metabolomics datasets. Metabolomics, the comprehensive profiling of metabolite abundances, are typically measured using mass spectrometry technologies that often introduce missingness via multiple mechanisms: (1) the metabolite signal may be smaller than the instrument limit of detection; (2) the conditions under which the data are collected and processed may lead to missing values; (3) missing values can be introduced randomly. Missingness resulting from mechanism (1) would be classified as Missing Not At Random (MNAR), that from mechanism (2) would be Missing At Random (MAR), and that from mechanism (3) would be classified as Missing Completely At Random (MCAR). Two common approaches for handling missing data are the following: (1) omit missing data from the analysis; (2) impute the missing values. Both approaches may introduce bias and reduce statistical power in downstream analyses such as testing metabolite associations with clinical variables. Further, standard imputation methods in metabolomics often ignore the mechanisms causing missingness and inaccurately estimate missing values within a data set. We propose a mechanism-aware imputation algorithm that leverages a two-step approach in imputing missing values. First, we use a random forest classifier to classify the missing mechanism for each missing value in the data set. Second, we impute each missing value using imputation algorithms that are specific to the predicted missingness mechanism (i.e., MAR/MCAR or MNAR). Using complete data, we conducted simulations, where we imposed different missingness patterns within the data and tested the performance of combinations of imputation algorithms. Our proposed algorithm provided imputations closer to the original data than those using only one imputation algorithm for all the missing values. Consequently, our two-step approach was able to reduce bias for improved downstream analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.