This paper describes the design, fabrication, and testing of a microfluidic sensor for dielectric spectroscopy (DS) of human whole blood during coagulation. The sensor, termed ClotChip, employs a three-dimensional (3D), parallel-plate, capacitive sensing structure with a floating electrode integrated into a microfluidic channel. Interfaced with an impedance analyzer, the ClotChip measures the complex relative dielectric permittivity, εr, of human whole blood in a frequency range of 40Hz to 100MHz. The temporal variation in the real part of the blood dielectric permittivity at 1MHz features a time to reach a permittivity peak, Tpeak, as well as a maximum change in permittivity after the peak, Δεr,max, as two distinct parameters of ClotChip readout. The ClotChip performance was benchmarked against rotational thromboelastometry (ROTEM) to evaluate the clinical utility of its readout parameters in capturing the clotting dynamics arising from coagulation factors and platelet activity. Tpeak exhibited a very strong positive correlation (r = 0.99, p < 0.0001) with the ROTEM clotting time (CT) parameter, whereas Δεr,max exhibited a strong positive correlation (r = 0.85, p < 0.001) with the ROTEM maximum clot firmness (MCF) parameter. This work demonstrates the ClotChip potential as a point-of-care (POC) platform to assess the complete hemostatic process using <10μL of human whole blood.
Background Rapid point-of-care (POC) assessment of hemostasis is clinically important in patients with a variety of coagulation factor and platelet defects who have bleeding disorders. Objective To evaluate a novel dielectric microsensor, termed ClotChip, which is based on the electrical technique of dielectric spectroscopy for rapid, comprehensive assessment of whole blood coagulation. Methods The ClotChip is a three-dimensional, parallel-plate, capacitive sensor integrated into a single-use microfluidic channel with miniscule sample volume (< 10 μL). The ClotChip readout is defined as the temporal variation in the real part of dielectric permittivity of whole blood at 1 MHz. Results The ClotChip readout exhibits two distinct parameters, namely, the time to reach a permittivity peak (T ) and the maximum change in permittivity after the peak (Δε ), which are, respectively, sensitive towards detecting non-cellular (i.e. coagulation factor) and cellular (i.e. platelet) abnormalities in the hemostatic process. We evaluated the performance of ClotChip using clinical blood samples from 15 healthy volunteers and 12 patients suffering from coagulation defects. The ClotChip T parameter exhibited superior sensitivity at distinguishing coagulation disorders as compared with conventional screening coagulation tests. Moreover, the ClotChip Δε parameter detected platelet function inhibition induced by aspirin and exhibited strong positive correlation with light transmission aggregometry. Conclusions This study demonstrates that ClotChip assesses multiple aspects of the hemostatic process in whole blood on a single disposable cartridge, highlighting its potential as a POC platform for rapid, comprehensive hemostatic analysis.
Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contributes to vaso-occlusion and disease pathophysiology. However, there are few...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.