We control nanoparticle (NP) dispersion by leveraging the entropic and enthalpic effects associated with mixing silica NPs grafted with polyisoprene (PI) chains into matrices of varying degrees of chemical dissimilarity. Previous work in this area has primarily focused on entropic factors alone, and hence, this work represents a significant advance over the current state-of-the-art. We show using a combination of transmission electron microscopy/small-angle X-ray scattering that mixing grafted particles with PI matrices of identical microstructure yields dispersion states as found in the literature for such entropic systems. However, replacing the PI matrix chains with dissimilar matrices leads to an introduction of enthalpic interactions that, in some cases, can drastically change the resulting morphology. In particular, while slightly different PI microstructures for the grafted and free chains only yield moderated differences, using styrene–butadiene copolymers as a matrix leads to a completely different behavior. In the last case, phase separation becomes more likely with the increasing graft length, while the PI system (whose behavior is dominated by entropic factors) shows the opposite behavior. Tuning the relative importance of enthalpic versus entropic factors is thus another tool in controlling the self-assembled structure of NPs, which gives rise to enhanced macroscopic properties in the composite.
We systematically vary the nanoparticle (NP) dispersion state in composites formed by mixing polyisoprene homopolymers with polyisoprene grafted silica particles, and demonstrate how creep measurements allow us to overcome the limitations of small amplitude oscillatory shear (SAOS) experiments. This allows us to access nearly 13 orders in time in the mechanical response of the resulting composites. We find that a specific NP morphology, a percolating particle network achieved at intermediate graft densities, significantly reinforces the system and has a lower NP percolation loading threshold relative to other morphologies. These important effects of morphology only become apparent when we combine creep measurements with SAOS reemphasizing the role of synergistically combining methods to access the mechanical properties of polymer nanocomposites over broad frequency ranges.
X-ray photon correlation spectroscopy measurements were used to quantify the dynamics of bare and bimodal grafted silica nanoparticles mixed with PEO melts of different molecular weights. In dilute polymer nanocomposite (PNC) samples, we find diffusive NP behavior as described by the Stokes–Einstein relationship so long as the adsorbed PEO polymer layer is taken into account in determining both the effective NP size and its role on composite viscosity. The size of this bound layer was found to be approximately 2R g, where R g is the chain radius of gyration. We also expanded our system to investigate how the dynamics of grafted NPs differ from bare NPs with an adsorbed layer. We showed that the dynamics again can be determined by an effective NP radius at a scale smaller than the effective interparticle spacing; however, at larger length scales, the morphology and grafting parameters play a major role in the system dynamics. These results allow us to quantify NP ordering driven by polymer crystallization. It has previously been speculated that behavior is controlled by the relative ratio of time scale of crystal growth and the diffusive time scale of the NPs, a Peclet number. When the former time scale is longer, then the NPs are expected to be segregated into the interlamellar amorphous zones, while the NPs are too slow to be reorganized in the opposite case. We show here that this conjecture is quantitatively correct and the demarcation in behavior occurs for Pe = 1. Thus, we provide a way to estimate a critical spherulite growth rate for any semicrystalline PNC, at which a given NP can be ordered. Together, the results of this study permit us to tunably design PNCs through directed dispersion of NPs in a polymer matrix.
Introduction: The escalating threat due to dwindling effect of antibiotics and challenge of tackling rising drug-resistant infections has gathered high focus in current medicinal research. Methods: In an attempt to find new molecules that can defeat microbial resistance, two new series of 2-[2-substituted ethenyl]-5-(substituted methoxy)-1,3,4-oxadiazole derivatives were synthesized. Various aromatic hydrazides were allowed to undergo cyclization to substituted oxadiazole-2- amines in the presence of cyanogen bromide and further condensed with different heterocyclic aldehydes to give new oxadiazole derivatives. The synthesized molecules were fully characterized by various spectral techniques and tested for antimicrobial activity. Results: Almost all the newly synthesized compounds especially (5g-5l) displayed remarkable growth inhibition against three bacterial strains: M. smegmatis, S. aureus, E. coli and fungi C. albicans. The antimicrobial activity was further confirmed by MIC assay against the same microorganisms. Oxadiazole 5g displayed promising activity with a MIC value of 0.025 mM for two bacteria and fungi, whereas MIC of this compound for E. coli was 0.1 mM. Other active compounds (5h-5l) also exhibited good MIC ranging between 0.313 to 5.0 mM against the selected microorganisms. Docking simulations were generated to explore the potential binding approaches of ligand 5g at the D-alanine:d-alanine ligase (Ddl) protein of E. coli and S. aureus. Conclusion: Molecule 5g was active even at a lower concentration and could probably act as a prospective lead molecule for targeting the drug resistant microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.