Meta-heuristics are commonly applied to solve various global optimization problems. In order to make the meta-heuristics performing a global search, balancing their exploration and exploration ability is still an open avenue. This manuscript proposes a novel Opposition-based learning scheme, called ''PCOBL'' (Partial Centroid Opposition-based Learning), inspired by the partial centroid. PCOBL aims to improve meta-heuristics performance through maintaining an effective balance between the exploration and exploitation. PCOBL was incorporated in three different meta-heuristics, and a comparative study was conducted on 28 CEC2013 benchmark problems with 30, 50, and 100 dimensions. In addition, we assessed the PCOBL in the IEEE CEC2011 real-world problems. The empirical results demonstrate that PCOBL balances the exploration and exploitation ability of the meta-heuristics, positively impacting their performance and making them outperform the state-of-the-art algorithms in terms of best-error runs and convergence in most of the optimization problems. Moreover, the computational cost analysis illustrated that the inclusion of PCOBL in the meta-heuristic algorithm has a low impact on its efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.