Aim To evaluate quantitatively the effects of the Epi-Off-CXL irradiance dose on the stromal stiffening of pig corneas. Setting Laboratory of Biological structures (LaBS), Politecnico di Milano, Milano, Italy. Methods Inflation tests have been carried on 90 excised and de-epithelized pig corneas, monitoring the change of configuration of the corneal dome at specific pressures. Test have been carried out twice on each cornea, once before and once after Epi-Off-CXL performed at a constant irradiance of 9 mW/cm2 and variable UV-A exposure times. Corneas were grouped according to the exposure time (2.5, 5, 10, 15 and 20 min), proportional to the irradiation dose (1.35, 2.7, 5.4, 8.1, and 10.8 J/cm2). A theoretical model based on linearized shell theory has been used to estimate the increment of the corneal stiffness. Results The linearized shell theory allowed to establish a quantitative relation between the increment of the stiffness parameters and the irradiation dose. Relative to the pre-treatment values, in all experiments the post-treatment corneal stiffness revealed a pronounced increase. In general, the stiffness gain increased with the exposure time. No significant differences in stiffening was observed between tests conducted at 2.5, 5, and 10 min exposure. Conclusions Qualitatively, the effectiveness of accelerated CXL treatments observed in pig corneas complies very well with in-vivo clinical results in humans, suggesting that experimental data in pigs can be very useful for the design of the procedure in humans. A larger irradiation dose provides a larger increment of the corneal stiffness. Due to the biological variability of the tissues, however, it is difficult to distinguish quantitatively the level of the reinforcement induced by accelerated protocols (low doses with < = 10 min exposure), less prone to induce damage in the corneal tissue. Therefore, the definition of personalized treatments must be related to the actual biomechanics of the cornea.
The present work aimed at decorating halloysite nanotubes (HNT) with magnetic Fe3O4 nanoparticles through different synthetic routes (co-precipitation, hydrothermal, and sol-gel) to test the efficiency of three magnetic composites (HNT/Fe3O4) to remove the antibiotic ofloxacin (OFL) from waters. The chemical–physical features of the obtained materials were characterized through the application of diverse techniques (XRPD, FT-IR spectroscopy, SEM, EDS, and TEM microscopy, thermogravimetric analysis, and magnetization measurements), while ecotoxicity was assessed through a standard test on the freshwater organism Daphnia magna. Independently of the synthesis procedure, the magnetic composites were successfully obtained. The Fe3O4 is nanometric (about 10 nm) and the weight percentage is sample-dependent. It decorates the HNT’s surface and also forms aggregates linking the nanotubes in Fe3O4-rich samples. Thermodynamic and kinetic experiments showed different adsorption capacities of OFL, ranging from 23 to 45 mg g−1. The kinetic process occurred within a few minutes, independently of the composite. The capability of the three HNT/Fe3O4 in removing the OFL was confirmed under realistic conditions, when OFL was added to tap, river, and effluent waters at µg L−1 concentration. No acute toxicity of the composites was observed on freshwater organisms. Despite the good results obtained for all the composites, the sample by co-precipitation is the most performant as it: (i) is easily magnetically separated from the media after the use; (ii) does not undergo any degradation after three adsorption cycles; (iii) is synthetized through a low-cost procedure. These features make this material an excellent candidate for removal of OFL from water.
ZnS–graphene composites (ZnSGO) were synthesized by a hydrothermal process and loaded onto carbon nanofibers (CNFs) by electrospinning (ZnS–GO/CNF), to obtain self-standing anodes for SIBs. The characterization techniques (XRPD, SEM, TEM, EDS, TGA, and Raman spectroscopy) confirm that the ZnS nanocrystals (10 nm) with sphalerite structure covered by the graphene sheets were successfully synthesized. In the ZnS–GO/CNF anodes, the active material is homogeneously dispersed in the CNFs’ matrix and the ordered carbon source mainly resides in the graphene component. Two self-standing ZnS–GO/CNF anodes (active material amount: 11.3 and 24.9 wt%) were electrochemically tested and compared to a tape-casted ZnS–GO example prepared by conventional methods (active material amount: 70 wt%). The results demonstrate improved specific capacity at high C-rate for the free-standing anodes compared to the tape-casted example (69.93 and 92.59 mAh g−1 at 5 C for 11.3 and 24.9 wt% free-standing anodes, respectively, vs. 50 mAh g−1 for tape-casted). The 24.9 wt% ZnS–GO/CNF anode gives the best cycling performances: we obtained capacities of 255–400 mAh g−1 for 200 cycles and coulombic efficiencies ≥ 99% at 0.5 C, and of 80–90 mAh g−1 for additional 50 cycles at 5 C. The results suggest that self-standing electrodes with improved electrochemical performances at high C-rates can be prepared by a feasible and simple strategy: ex situ synthesis of the active material and addition to the carbon precursor for electrospinning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.