vmPFC stimulation was effective in a chronic model of depression. Our results suggest that the integrity of the serotonergic system is important for the anti-anhedonic-like effects of DBS but question a direct role of hippocampal BDNF.
Numerous studies indicate that sleep deprivation alters energy expenditure. However, this conclusion is drawn from indirect measurements. In the present study, we investigated alterations of energy expenditure, body composition, blood glucose levels, plasma insulin, adrenocorticotropic hormone (ACTH) and corticosterone levels immediately after 4 days of sleep deprivation or after 4 days of sleep recovery. Rats were sleep deprived or maintained in a control environment (groups sleep-deprived/deprivation and control/deprivation). One half of these animals were sacrificed at the end of the deprivation period and the other half was transported to metabolic cages, where they were allowed to sleep freely (groups sleep-deprived/recovery and control/recovery). At the end of the sleep recovery period, these rats were sacrificed. After sleep deprivation, sleep-deprived rats exhibited loss of body weight, augmented energy expenditure and reduced metabolic efficiency compared to control rats. These alterations were normalised during the sleep recovery period. The body composition of sleep-deprived rats was altered insofar as there was a loss of fat content and gain of protein content in the carcass compared to control rats. However, these alterations were not reversed by sleep recovery. Finally, plasma levels of insulin were reduced during the sleep deprivation period in both control and sleep deprived groups compared to the recovery period. After the deprivation period, plasma ACTH and corticosterone levels were increased in sleep-deprived rats compared to control rats, and although ACTH levels were similar between the groups after the sleep recovery period, corticosterone levels remained elevated in sleep-deprived rats after this period. By means of direct measurements of metabolism, our results showed that sleep deprivation produces increased energy expenditure and loss of fat content. Most of the alterations were reversed by sleep recovery, except for corticosterone levels and body composition.
SUMMARYThe methods used to induce paradoxical sleep (PS) deprivation are believed to be stressful. In the present study, two methods were compared in regard to their ability to activate the hypothalamic-pituitary-adrenal (HPA) axis. Animals were placed on multiple large (MLP) or small (MSP) platforms or on single large (SLP) or small (SSP) platforms and blood sampled at the end of a 4-day period of PS deprivation (experiment 1) or on Days 1 (short-term) and 4 (long-term) of PS deprivation (experiment 2). ACTH and corticosterone (CORT) levels were determined by RIA. The results of experiment 1 showed that all experimental animals presented increased ACTH response, compared to controls. CORT levels, however, were only elevated in MSP animals, suggesting increased adrenal sensitivity. Experiment 2 showed that ACTH levels of MSP animals were higher than MLP and SSP animals, and that animals placed on the multiple platform tanks showed the highest ACTH levels on Day 4 of manipulation. CORT levels were elevated in the animals kept over small platforms, and these levels where higher on Day 1 than basal and further elevated on Day 4 of PS deprivation. These results indicate that the multiple platform technique induces a distinct activation of the HPA axis, and that PS deprivation may act as an additional stressor.
Rats were deprived of sleep for 96 h by the platform technique and total glutathione (GSHtau) levels were measured in seven different brain areas. Glutathione levels were found to be significantly reduced in the hypothalamus of sleep-deprived animals when compared with large platform (-18%) or home cage (-31%) controls. Deprived rats also had reduced GSHtau levels in thalamus compared with home cage controls only. Glutathione levels did not differ among the three groups in any of the other brain areas examined. These results indicate that specific brain areas may be differentially susceptible to oxidative stress after sleep deprivation. The apparent vulnerability of the hypothalamus to these effects may contribute to some of the functional effects of sleep deprivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.