Although two-dimensional (2D) parabolic integro-differential equations (PIDEs) arise in many physical contexts, there is no generally available software that is able to solve them numerically. To remedy this situation, in this article, we provide a compact implementation for solving 2D PIDEs using the finite element method (FEM) on unstructured grids. Piecewise linear finite element spaces on triangles are used for the space discretization, whereas the time discretization is based on the backward-Euler and the Crank–Nicolson methods. The quadrature rules for discretizing the Volterra integral term are chosen so as to be consistent with the time-stepping schemes; a more efficient version of the implementation that uses a vectorization technique in the assembly process is also presented. The compactness of the approach is demonstrated using the software Matrix Laboratory (MATLAB). The efficiency is demonstrated via a numerical example on an L-shaped domain, for which a comparison is possible against the commercially available finite element software COMSOL Multiphysics. Moreover, further consideration indicates that COMSOL Multiphysics cannot be directly applied to 2D PIDEs containing more complex kernels in the Volterra integral term, whereas our method can. Consequently, the subroutines we present constitute a valuable open and validated resource for solving more general 2D PIDEs.
Building a velocity model is essential in seismic exploration and is used at all stages, including acquisition, processing and interpretation of seismic data. Reconstructing a subsurface image from seismic wavefields recorded at the surface (seismograms) requires accurate knowledge of the propagation velocities between the recording location and the image location at depth. Estimation of velocity models can also be used as initial models to recursively generate high-resolution velocity models through optimization algorithms. Machine learning is a field of artificial intelligence that uses computational techniques to give systems the ability to learn from a large volume of data. In particular, neural networks have been developed to reconstruct subsurface parameters, i.e., the acoustic (compressional) wave velocity model, directly from raw seismic data. Using this principle as a starting point we will use two neural network approaches to solve the problem, where a GAN neural network and a ReGENN network will be used.
The tumor growth paradox through a 3D cellular automata model with cancer stem cells Resumo Na medicina, para combater o câncer, são utilizados tratamentos como quimioterapia e radioterapia, formas comuns para matar as células cancerosas e limitar os danosàs células saudáveis adjacentes. Entretanto, na presença de células-tronco cancerígenas pode ocorrer o chamado paradoxo do crescimento do tumor, istoé, ocorre o crescimento tumoral acelerado com o aumento da morte celular. Neste trabalho, apresentamos um modelo de autômatos celulares tridimensional para simular a evolução de um câncer em presença de células cancerígenas e células-tronco cancerígenas. Este modelo aqui apresentado mostra como uma simples abordagem matemática simula a ocorrência do paradoxo do crescimento tumoral, fornecendo uma possível razão da causa do mesmo e mostrando assim, o paradoxo como uma situação esperada. Palavras-chave: Biomatemática. Modelo de Autômatos Celulares. Células-tronco Cancerígenas. Paradoxo do Crescimento Tumoral. AbstractIn medicine, to fight cancer, treatments like chemotherapy and radiotherapy, common forms of treatment to kill cancer cells and limit damage to adjacent normal cells are used. But in the presence of cancer stem cells can be occur the so-called tumor growth paradox, that is, accelerated tumor growth with increased cell death. In this work, we present a three-dimensional cellular automata model to simulate the evolution of a cancer in the presence of normal cancerous and stem cells. This model presented here shows how a simple mathematical approach simulates the occurrence of the tumor growth paradox, providing a possible reason for the tumor's cause and thus showing the paradox as an expected situation.__________________________________________ Artigo recebido em set. 2018 e aceito em fev. 2019.
Neste trabalho, apresentamos um estudo de métodos numéricos para a solução de escoamentos de fluidos incompressíveis, com ênfase nos efeitos viscoelásticos. O termo da derivada convectada superior é reescrito usando a definição da derivada generalizada de Lie em uma estrutura Lagrangiana, fornecendo um novo esquema numérico para escoamentos de fluidos viscoelásticos. A modelagem matemática envolve as equações de Navier-Stokes e um sistema de equações que definem a contribuição viscoelástica do tensor tensão extra. A formulação numérica combina uma discretização de diferenças finitas, no contexto MAC, com um método de projeção e a reformulação da equação constitutiva. Realizamos análises teóricas dos métodos propostos, estudos de convergência de problemas simples e aplicações na solução de escoamentos de fluidos complexos. Os resultados numéricos concordam com a teoria desenvolvida, apresentam bons resultados quando comparado com outros métodos numéricos da literatura e permitem uma discussão sobre as instabilidades numéricas de problemas de alto número de Weissenberg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.