Outbreaks of cutaneous leishmaniasis are relatively common among soldiers involved in nocturnal activities in tropical forests. We investigated the population dynamics of sand flies in a military training camp located in a remnant of Atlantic rainforest in northeastern Brazil, where outbreaks of cutaneous leishmaniasis have sporadically been described. From July 2012 to July 2014, light traps were monthly placed in 10 collection sites, being nine sites located near the forest edge and one near a sheep and goat stable. Light traps operated from 5:00 pm to 6:00 am, during four consecutive nights. Leishmania infection in sand flies was assessed using a fast real-time PCR assay. Cases of cutaneous leishmaniasis among soldiers were also investigated. In total, 24,606 sand flies belonging to 25 species were identified. Males (n = 12,683) predominated over females (n = 11,923). Sand flies were present during all months, being more numerous in March (n = 1,691) and April 2013 (n = 3,324). Lutzomyia choti (72.9%) was the most abundant species, followed by Lutzomyia longispina (13.8%), Lutzomyia complexa (5.3%), representing together >90% of the sand flies collected. Forty cases of cutaneous leishmaniasis were recorded among soldiers from January 2012 to December 2014. Leishmania isolates were obtained from eight patients and were all characterized as Leishmania braziliensis. Soldiers and anyone overnighting in Atlantic rainforest remnants should adopt preventative measures such as the use of repellents on bare skin or clothes and insecticide-treated tents.
BackgroundFrom 2012 to 2013, an outbreak of cutaneous leishmaniasis by Leishmania braziliensis was detected in indigenous villages located in a remote rural area of Pernambuco state, north-eastern Brazil. Considering that the principal activities of this indigenous community are farming and crop plantation, and also that the outbreak involved many children, we investigated the presence of sand fly vectors inside human houses and also the exposure of dogs to leishmanial parasites. Our general objective was to gather epidemiological data that could indicate the occurrence of a peri-domestic/domestic transmission cycle of L. braziliensis in these indigenous villages.MethodsFrom March 2015 to March 2016, sand flies were collected using light traps in the indoor and immediate outdoor environments in the three indigenous villages that reported the most cutaneous leishmaniasis cases during the 2012–2013 outbreak. Moreover, samples obtained from 300 dogs living in the outbreak villages and two nearby villages were tested by a rapid immunochromatographic test and by a real-time PCR for detecting anti-Leishmania antibodies and Leishmania DNA, respectively.ResultsIn total, 5640 sand flies belonging to 11 species were identified. Males (n = 3540) predominated over females (n = 2100). Migonemyia migonei (84.3%) was the most abundant species, followed by Evandromyia lenti (5.5%), Lutzomyia longipalpis (4.1%), Nyssomyia intermedia (1.6%) and Micropygomyia capixaba (1.4%), representing together ~97% of the sand flies collected. Nine out of the 11 species identified in this study were found indoors, including M. migonei, L. longipalpis and N. intermedia, which are proven vectors of Leishmania spp. Out of 300 dogs tested, 26 (8.7%) presented anti-Leishmania antibodies and six (2%) were Leishmania DNA-positive. The level of exposure in dogs living in the indigenous villages where the 2012–2013 outbreak of human CL was detected was almost 2-fold higher than in the two nearby villages (11.0 vs 6.2% for serology and 2.6 vs 1.4% for real-time PCR).ConclusionsThe results suggest that different sand fly vectors may be adapted to human dwellings, thus increasing the risk of transmission in the indoor and immediate outdoor environments. The adaptation of sand flies to the indoor environment in the studied indigenous villages may be partly explained by the poor housing conditions and the proximity of the houses to crop plantations and forest fragments.Electronic supplementary materialThe online version of this article (10.1186/s13071-019-3383-1) contains supplementary material, which is available to authorized users.
Background: The blood-feeding behaviour of female sand flies may increase their likelihood of acquiring and transmitting Leishmania parasites. Studies on the host usage by these insects may thus improve our understanding of the Leishmania transmission risk in leishmaniasis-endemic areas. Here, we developed a fast multiplex real-time PCR assay for simultaneous detection of dog, human and Leishmania DNA in sand flies. Methods: Primers and TaqMan probes targeting the mitochondrial cytochrome c oxidase subunit 1 and cytochrome b genes of dog and human, respectively, were combined in a multiplex assay, which also includes primers and a TaqMan probe targeting the Leishmania minicircle kinetoplast DNA. Results: The multiplex assay was 100% specific, with analytical sensitivities of 10 3 fg/reaction for dog and human and 1 fg for Leishmania. By testing field-collected engorged female sand flies (95 Migonemyia migonei and two Nyssomyia intermedia), 50 M. migonei were positive for one or two targets (positivity rates: 45.4% for human, 4.1% for dog and 12.4% for Leishmania DNA). Conclusions: This multiplex real-time PCR assay represents a novel fast assay for detecting dog, human and Leishmania DNA in female sand flies and therefore a tool for assessing the risk of Leishmania transmission to these hosts in areas of active transmission.
BackgroundEhrlichia canis is a tick-borne bacterium that causes severe, life-threatening disease in dogs, being more prevalent in tropical and subtropical countries. Randomized studies conducted in Brazil indicate that the prevalence of E. canis infection in dogs ranges from 0.7% to over 50.0%. In a study conducted in northern Brazil, the prevalence was higher in dogs from urban areas, as compared to dogs from rural areas. In the present study, we investigated the exposure to Ehrlichia spp. infection in dogs from remote indigenous villages located in a rural area in north-eastern Brazil.MethodsFrom March to June 2015, 300 privately owned dogs were blood sampled and tested by a rapid ELISA and by a conventional PCR in order to detect anti-Ehrlichia spp. antibodies and E. canis DNA, respectively. Additionally, dogs were also tested for anti-Anaplasma spp. antibodies and Anaplasma platys DNA, using the same diagnostic approaches. Positivity was correlated with tick infestation and dogs’ data (gender, age and level of restriction).ResultsOverall, 212 (70.7%) dogs were positive for at least one test targeting Ehrlichia spp. In particular, 173 (57.7%) dogs were positive only by rapid ELISA, 5 (1.7%) only by PCR and 34 (11.4%) were simultaneously positive by both tests. In the same way, 39 (13.0%) dogs presented detectable E. canis DNA in their blood, whereas 18 (6.0%) dogs were A. platys DNA-positive. Coupling serological and PCR data, 63 (21.0%) dogs were simultaneously positive to Ehrlichia spp. and Anaplasma spp. Positivity rates for both Ehrlichia spp. and Anaplasma spp. were higher among dogs more than 1 year of age. Sick dogs were more positive to Ehrlichia spp. as compared to healthy dogs.ConclusionsDogs from rural areas in north-eastern Brazil are highly exposed to Ehrlichia spp. infection and positivity rates do not necessarily correlate with current tick infestation load, since only one infected tick bite is needed to get the infection. This reinforces the importance of keeping dogs free of ticks, in order to reduce as much as possible the risk of infection by E. canis and other tick-borne pathogens such as Babesia vogeli, which are usually co-endemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.