Sheep are an important part of the global agricultural economy. Growth and meat production traits are significant economic traits in sheep. The Texel breed is the most popular terminal sire breed in the UK, mainly selected for muscle growth and lean carcasses. This is a study based on a genome-wide association approach that investigates the links between some economically important traits, including computed tomography (CT) measurements, and molecular polymorphisms in UK Texel sheep. Our main aim was to identify single nucleotide polymorphisms (SNP) associated with growth, carcass, health and welfare traits of the Texel sheep breed. This study used data from 384 Texel rams. Data comprised ten traits, including two CT measured traits. The phenotypic data were placed in four categories: growth traits, carcass traits, health traits and welfare traits. De-regressed estimated breeding values (EBV) for these traits together with sire genotypes derived with the Ovine 50 K SNP array of Illumina were jointly analysed in a genome wide association analysis. Eight novel chromosome-wise significant associations were found for carcass, growth, health and welfare traits. Three significant markers were intronic variants and the remainder intergenic variants. This study is a first step to search for genomic regions controlling CT-based productivity traits related to body and carcass composition in a terminal sire sheep breed using a 50 K SNP genome-wide array. Results are important for the further development of strategies to identify causal variants associated with CT measures and other commercial traits in sheep. Independent studies are needed to confirm these results and identify candidate genes for the studied traits.
Background
Crohn’s disease is one of the two categories of inflammatory bowel diseases that affect the gastrointestinal tract. The heritability estimate has been reported to be 0.75. Several genes linked to Crohn’s disease risk have been identified using a plethora of strategies such as linkage-based studies, candidate gene association studies, and lately through genome-wide association studies (GWAS). Nevertheless, to our knowledge, a compendium of all the genes that have been associated with CD is lacking.
Methods
We conducted functional analyses of a gene set generated from a systematic review where genes potentially related to CD found in the literature were analyzed and classified depending on the genetic evidence reported and putative biological function. For this, we retrieved and analyzed 2496 abstracts comprising 1067 human genes plus 22 publications regarding 133 genes from GWAS Catalog. Then, each gene was curated and categorized according to the type of evidence associated with Crohn’s disease.
Results
We identified 126 genes associated with Crohn’s disease risk by specific experiments. Additionally, 71 genes were recognized associated through GWAS alone, 18 to treatment response, 41 to disease complications, and 81 to related diseases. Bioinformatic analysis of the 126 genes supports their importance in Crohn’s disease and highlights genes associated with specific aspects such as symptoms, drugs, and comorbidities. Importantly, most genes were not included in commercial genetic panels suggesting that Crohn’s disease is genetically underdiagnosed.
Conclusions
We identified a total of 126 genes from PubMed and 71 from GWAS that showed evidence of association to diagnosis, 18 to treatment response, and 41 to disease complications in Crohn’s disease. This prioritized gene catalog can be explored at http://victortrevino.bioinformatics.mx/CrohnDisease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.