Notable advances in gene sequencing methods in recent years have permitted enormous progress in the phenotypic and genotypic characterization of autoinflammatory syndromes. Interferonopathies are a recent group of inherited autoinflammatory diseases, characterized by a dysregulation of the interferon pathway, leading to constitutive upregulation of its activation mechanisms or downregulation of negative regulatory systems. They are clinically heterogeneous, but some peculiar clinical features may lead to suspicion: a familial “idiopathic” juvenile arthritis resistant to conventional treatments, an early necrotizing vasculitis, a non-infectious interstitial lung disease, and a panniculitis associated or not with a lipodystrophy may represent the “interferon alarm bells.” The awareness of this group of diseases represents a challenge for pediatricians because, despite being rare, a differential diagnosis with the most common childhood rheumatological and immunological disorders is mandatory. Furthermore, the characterization of interferonopathy molecular pathogenetic mechanisms is allowing important steps forward in other immune dysregulation diseases, such as systemic lupus erythematosus and inflammatory myositis, implementing the opportunity of a more effective target therapy.
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.
Juvenile Idiopathic Arthritis is one of the most prevalent chronic diseases in children, with an annual incidence of 2–20 cases per 100,000 and a prevalence of 16–150 per 100,000. It is associated with several complications that can cause short-term or long-term disability and reduce the quality of life. Among these, growth and pubertal disorders play an important role. Chronic inflammatory conditions are often associated with growth failure ranging from slight decrease in height velocity to severe forms of short stature. The prevalence of short stature in JIA varies from 10.4% in children with polyarticular disease to 41% of patients with the systemic form, while oligoarthritis is mostly associated with localized excessive bone growth of the affected limb, leading to limb dissymmetry. The pathogenesis of growth disorders is multifactorial and includes the role of chronic inflammation, long-term use of corticosteroids, undernutrition, altered body composition, delay of pubertal onset or slow pubertal progression. These factors can exert a systemic effect on the GH/IGF-1 axis and on the GnRH-gonadotropin-gonadic axis, or a local influence on the growth plate homeostasis and function. Although new therapeutic options are available to control inflammation, there are still 10–20% of patients with severe forms of the disease who show continuous growth impairment, ending in a short final stature. Moreover, delayed puberty is associated with a reduction in the peak bone mass with the possibility of concomitant or future bone fragility. Monitoring of puberty and bone health is essential for a complete health assessment of adolescents with JIA. In these patients, an assessment of the pubertal stage every 6 months from the age of 9 years is recommended. Also, linear growth should be always evaluated considering the patient’s bone age. The impact of rhGH therapy in children with JIA is still unclear, but it has been shown that if rhGH is added at high dose in a low-inflammatory condition, post steroids and on biologic therapy, it is able to favor a prepubertal growth acceleration, comparable with the catch-up growth response in GH-deficient patients. Here we provide a comprehensive review of the pathogenesis of puberty and growth disorders in children with JIA, which can help the pediatrician to properly and timely assess the presence of growth and pubertal disorders in JIA patients.
Bone is an extremely dynamic and adaptive tissue, whose metabolism and homeostasis is influenced by many different hormonal, mechanical, nutritional, immunological and pharmacological stimuli. Genetic factors significantly affect bone health, through their influence on bone cells function, cartilage quality, calcium and vitamin D homeostasis, sex hormone metabolism and pubertal timing. In addition, optimal nutrition and physical activity contribute to bone mass acquisition in the growing age. All these factors influence the attainment of peak bone mass, a critical determinant of bone health and fracture risk in adulthood. Secondary osteoporosis is an important issue of clinical care in children with acute and chronic diseases. Systemic autoimmune disorders, like juvenile idiopathic arthritis, can affect the skeletal system, causing reduced bone mineral density and high risk of fragility fractures during childhood. In these patients, multiple factors contribute to reduce bone strength, including systemic inflammation with elevated cytokines, reduced physical activity, malabsorption and nutritional deficiency, inadequate daily calcium and vitamin D intake, use of glucocorticoids, poor growth and pubertal delay. In juvenile arthritis, osteoporosis is more prominent at the femoral neck and radius compared to the lumbar spine. Nevertheless, vertebral fractures are an important, often asymptomatic manifestation, especially in glucocorticoid-treated patients. A standardized diagnostic approach to the musculoskeletal system, including prophylaxis, therapy and follow up, is therefore mandatory in at risk children. Here we discuss the molecular mechanisms involved in skeletal homeostasis and the influence of inflammation and chronic disease on bone metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.