Breast cancer is a genetic disease arising from a series of germ-line and/or somatic DNA changes in a variety of genes, including BRCA1 and BRCA2. DNA modi®ca-tions have been shown to occur by a number of mechanisms that include DNA methylation. In some cases, the aberrant methylation of CpGs within 5' regulatory regions has led to suppression of gene activity. In this report we describe a variation in the pattern of DNA methylation within the regulatory region of the BRCA1 gene. We found no evidence of methylation at CpGs within the BRCA1 promoter in a variety of normal human tissues. However, screening of a series of randomly sampled breast carcinomas revealed the presence of CpG methylation adjacent to the BRCA1 transcription start site. One such methylated CpG occurs at a putative CREB (cAMP-responsive element binding) transcription factor binding site in the BRCA1 promoter. Gelshift assays with methylated and unmethylated BRCA1/CREB binding site oligonucleotides demonstrate that this site is sensitive to site-speci®c CpG methylation. These data suggest that aberrant DNA methylation at regulatory sequences in the BRCA1 locus may play a role in the transcriptional inactivation of the BRCA1 gene within subclones of breast tumors. This study represents the ®rst evidence suggesting a role for DNA methylation in the transcriptional inactivation of the BRCA1 in human breast cancer.
Tumour suppressor genes and growth regulatory genes are frequent targets for methylation defects that can result in aberrant expression and mutagenesis. We have established a methylation map of the promoter region of the neuro®bromatosis (NF1) gene and demonstrated functional sensitivity for methylation at speci®c sites for the SP1 and CRE binding (CREB) proteins in the NF1 regulatory region. We evaluated the methylation status of CpG dinucleotides within ®ve promoter subregions in the human and mouse homologues of the neuro®bromatosis (NF1) genes. Three 5' subregions were found to be consistently methylated in all the tissues analysed. In contrast, DNA methylation was absent in the vicinity of the transcription start site bounded by SP1 recognition sequences. Gelshift assays showed that methylation speci®cally inhibits the CREB transcription factor from binding to its recognition site at the NF1 transcription start site. Furthermore, SP1 elements within the NF1 promoter are methylation sensitive, particularly when methylation is present on the antisense strand. We propose that for NF1 as with several other tumour suppressor genes, CpG methylation occurs in a complex, site-speci®c manner with the maintenance of a methylation-free promoter region bounded by SP1 binding sites that allow an accessible promoter to be retained. When these SP1 boundaries are breached, methylation can sweep in, rendering the promoter inaccessible for speci®c methylation-sensitive transcription factors and leading to a loss of functional integrity of the methylation-free CpG island.
A wide spectrum of mutations, ranging from point mutations to large deletions, have been described in the retinoblastoma gene (RB1). Mutations have been found throughout the gene; however, these genetic alterations do not appear to be homogeneously distributed. In particular, a significant proportion of disease-causing mutations results in the premature termination of protein synthesis, and the majority of these mutations occur as C-->T transitions at CpG dinucleotides (CpGs). Such recurrent CpG mutations, including those found in RB1, are likely the result of the deamination of 5-methylcytosine within these CpGs. In the present study, we used the sodiumbisulfite conversion method to detect cytosine methylation in representative exons of RB1. We analyzed DNA from a variety of tissues and specifically targeted CGA codons in RB1, where recurrent premature termination mutations have been reported. We found that DNA methylation within RB1 exons 8, 14, 25, and 27 appeared to be restricted to CpGs, including six CGA codons. Other codons containing methylated cytosines have not been reported to be mutated. Therefore, disease-causing mutations at CpGs in RB1 appear to be determined by several factors, including the constitutive presence of DNA methylation at cytosines within CpGs, the specific codon within which the methylated cytosine is located, and the particular region of the gene within which that codon resides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.