The Karma asteroid family is a group of primitive asteroids in the middle part of the main belt, just at the outer edge of the 3J:1A mean-motion resonance. We obtained the list of the family members with 317 asteroids, and estimated that it was formed by the catastrophic disruption of a parent body that was between 34 and 41 km in diameter. Based on the V-shape method, age of the Karma family is estimated to be about 137 Myr. A detailed dynamical map of the region combined with numerical simulations allowed us to reconstruct the long-term dynamical evolution of the family, and to identify the mechanisms responsible for this evolution. The numerical simulations successfully reproduced the main features in the orbital distribution of the family members but also showed that some regions of the Karma family could be missing. A more detailed analysis revealed that these regions likely consist of very dark objects, fainter than absolute magnitude H=17, that have not yet been detected. Based on the obtained results, we concluded that magnitude-frequency distribution of family members up to H=16 mag is neither affected by dynamical erosion nor observational incompleteness, and therefore represents the result of collisional grinding of the original family population. Finally, we found that the Karma family have been supplying some asteroids to the near-Earth region via the 3J:1A resonance. Currently there should about 10 family members larger than 1 km in diameter, orbiting in the near-Earth space.
We present the physical and dynamical properties of the recently discovered active asteroid (248370) 2005QN173 (aka 433P). From our observations, we derived two possible rotation period solutions of 2.7 ± 0.1 and 4.1 ± 0.1 hours. The corresponding light curve amplitudes computed after correcting for the effect of coma are 0.28 and 0.58 mag, respectively. Both period solutions are shorter than the critical rotation limit computed for a strengthless triaxial ellipsoid, suggesting that rotation mass shedding should at least partly be responsible for the observed activity. We confirm that the activity level is fading further, but at a very modest rate of only 0.006 mag/day, still also compatible with sublimation-driven activity. We found that 248370 likely belongs to the Themis asteroid family, making it a fourth main-belt comet associated with this group. Orbital characteristics of 248370 are also consistent with its origin in the young 288P cluster of asteroids. The 288P cluster is associated with its namesake main-belt comet, providing an exciting possibility for a comparative analysis of intriguing main-belt comets 248370 and 288P.
<p align="justify"><strong>1. INTRODUCTION </strong></p> <p align="justify">Active asteroids are small solar system bodies, having at the same time the orbital characteristics of asteroids but showing the physical characteristics of comets, including coma and tail-like appearance. A subpopulation of active asteroids that have sublimation as the main source of activity is known as main-belt comets (MBCs, [6]). The MBCs could be a key to tracing the origin and evolution of volatile materials in the asteroid belt and could help our understanding of the protoplanetary disk process and planetary formation. The number of known MBCs is, however, still relatively small. For this reason, the characterisation of new objects is of considerable importance.</p> <p align="justify">This work analyses active asteroid (248370) 2005QN173, (aka 433P). Its activity was recently discovered by Fitzsimmons et al. [4] in the images collected by the Asteroid-Terrestrial-Impact Last Alert System (ATLAS;[11]). Based on the recurrent activity, Chandler et al. [3] suggested that activity is sublimation-driven, making asteroid 248370 a main-belt comet. Aiming to constrain possible activity mechanisms further, we performed photometric observations of 248370. Our primary goals are to quantify the activity level variation and determine the rotation period. The activity changes could help better understand what is driving the activity. Similarly, the rotation period provides a clue on a possible mass shedding due to rotational instabilities. Furthermore, we also analysed its dynamical stability in order to get insights into the past orbit evolution. Finally, we investigated its possible association with asteroid families.</p> <p align="justify"><strong>2. OBSERVATIONS </strong></p> <p align="justify">Observations of the 248370 were collected on 2021 October 5/6 from the Astronomical station Vidojevica (C89), using a 1.4 m Milankovi&#263; telescope. All images were made in standard Johnson-Cousin R-filter.</p> <p align="justify"><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAwUAAAMBCAYAAAC+9BhvAAABhWlDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AYht+mSkupOthBxCFDFQcLoiKOWoUiVAi1QqsOJpf+QZOGpMXFUXAtOPizWHVwcdbVwVUQBH9A3NycFF2kxO+SQosY7zju4b3vfbn7DhAaZaZZXeOAplfNVCIuZrKrYuAVIQTRS3NUZpYxJ0lJeI6ve/j4fhfjWd51f44eNWcxwCcSzzLDrBJvEE9vVg3O+8QRVpRV4nPiMZMuSPzIdcXlN84FhwWeGTHTqXniCLFY6GClg1nR1IiniKOqplO+kHFZ5bzFWSvXWOue/IXhnL6yzHVaQ0hgEUuQIEJBDSWUUUWMdp0UCyk6j3v4Bx2/RC6FXCUwciygAg2y4wf/g9+9tfKTE25SOA50v9j2xzAQ2AWaddv+Prbt5gngfwau9La/0gBmPkmvt7XoEdC3DVxctzVlD7jcAQaeDNmUHclPS8jngfcz+qYs0H8LhNbcvrXOcfoApKlXyRvg4BAYKVD2use7g519+7em1b8fQ3hylJ2KI24AAAAGYktHRACDAFMAR4lHNecAAAAJcEhZcwAACxMAAAsTAQCanBgAAAAHdElNRQflCggOHQz5HR3iAAAAGXRFWHRDb21tZW50AENyZWF0ZWQgd2l0aCBHSU1QV4EOFwAAIABJREFUeNqUvXmwrelV3vd8w/72PO99pnv79m21hsgSEiCjwYCkSJECSCQF2BgQg00QUbBICFYYQsVxSFwOwY6NKVWKQgSXMQYiUADJhFHG0AIJEAINQYJuerjDGfd09jx9X/4457fu2leqMrlVXd197z17f9/7rnetZz3rWesNXv/612dPPfWUxuOx9vb2dHl5qfl8rmazqdlspnq9rjAMNRqN1Gw2dXJyoiAIJElBEKharapUKunpp5/W3t6eoihSGIaaTqdaLBaKokhRFClJEm23W8VxrDRNdXFxoUqlou12q1KppCRJJEm9Xk+FQkFBEGg+n6tSqWg+nyvLMuXzeWVZpn6/rxe/+MW6f/++0jRVPp9XkiQKw1Dz+Vz5fF6TyUTb7VbNZlPr9dqeK5fLab1eq1AoKEkSLRYLBUGg2WymwWCgarWq9Xqter2u+/fvq9FoaLvdKk1TBUGgNE21Wq2Uz+ft82ezmbbbrYIg0GQyUalU0nw+V7vdVrlc1mg0srWoVCpaLBbKskxhGGq5XKpUKimfz+vs7My+o1wuK0kSBUGgKIq0Xq9VLpd1enoqSfb96/Va2+1WhUJBaZrau/FncRzb2pZKJV1cXKhWqykIAoVhqDRNdXl5qVarpeFwqPV6rSRJtNlslCSJJpOJut2uZrOZKpWK+v2+ff5yudTBwYFms5lms5larZbOzs603W51dHSku3fvKp/PK01TdTod28coijSfz5WmqXK5nOI41mazUalU0mg0UqVSMRsKgkCFQkG1Wk2DwcD2mOdl38MwVBAE6vf7Ojo60snJieI4liSFYag4jne+ZzKZKE1TbbdbFYtFLRYLlctlXV5eKgxDVSoVDYdDVatVXV5eqlwuK4oi+5yTkxMVCgUVCgVFUaTNZqPNZqNCoaDpdKokSVSr1dTv9+3zptOpVquVCoWCFouFZrOZDg8PJUlZlmkymahQKGg+n2u73do7SlKhUFAYhpKkyWSiWq1mdjadTu2disWivW8ul9NoNNJ0OtXe3p7SNFWhUNBwOFQul1MYhtpsNoqiSMvl0p6XX/yd7XarLMuUy+XsPPM8nLMgCOxcpGmq5XJpv1epVDQYDFSpVLTZbBSGoVarlSSp0WhosVhoPB4rn8+bP5nNZsqyTJvNRkEQqN1uK0kSTadTDYdDe8/RaGTfwT6laap6va5+v6/VaqVOp6PLy0sdHh6q3+9rb29PFxcX2mw25g8mk4mtM3bT6XR0//59VatVDYdDhWGoWq2m1WqlXC6nYrFo/z0ajVStVjWZTJTP59XtdjUYDMw+2Ydisajz83O1Wi0Vi0VJ0na7Vb/fV7lc1nK5VLPZVJqmms/n5mvn87kajYad2+12az6K8zqfz1UqlbRer1WtVs0fxXGsKIqUZZniOFaz2dSdO3fUbrdtrzmPvD/nabFYSJJWq5X5j3q9ruVyqXw+v7Of2+1WSZIoyzKVy2Wz9c1mYzaBrVxeXmp/f1/z+VxhGCqfz6tQKGg2m6larWqxWJg/iuPY7KpWq+n4+FidTkfT6dSeN4oinZ+fq9PpaLvd2pnabDbKskzr9VqbzUbNZlOLxUKj0UhpmqrVapm94d86nY4Gg4H51cFgoHK5bJ9bLBbNRxOPut2uJOns7Ey1Wk1pmipJEuVyOQ2HQ1uPKIo0nU61Xq/ND6dpaue/VquZ7ReLRUVRpNlsplwuJ0laLpeK41j1el2LxUKr1UrL5VLj8ViPPfaYyuWyJpOJxuOxSqWS4jjW+fm5bt26pWeffVZJkpg912o1W//xeKxbt25pOp0qDEOt12tdXFxob29Po9FI+/v7ury81GKxUKVSMf9JfC4UCrq8vFS329V2uzVbYN05u6VSSVEU2fOlaao0TXfs6MaNGzo9PVW73bbvOz09teedzWZqNpsKw9BiQBzHWiwW2mw2qtfrFjdWq5U2m40kabPZ2J6tVitNJhOVy2VNp1OL86vVSmEYql6vW1zs9Xp25jabjRqNhpbLpZ0d9g8M1ev1lM/nVSwWtdlsbA3iODaf0e/3Va1WFYahyuWyhsOhsizTfD7X/v6+hsOhoiiyswBe4HxMp1OzZbASPtvjlFqtpu12a2eFmF6v13V+fq4oigw/8VlhGGqxWBheCoLA7PHy8lJZlqler2symShJEi2XS3u+MAzV7/dVLBbNT9TrdYtpnI3hcKg0TTUej3V4eGjvlmWZms2mRqORYb71eq0syxQEgfnaRqOhLMsM2/T7fZVKJQ2HQ3U6HQ2HQ73iFa/Qu9/9br30pS+1vfrO7/xO/dIv/ZIuLy+Vy+V0cXGhF73oRVqtVrp3755h0mKxqJOTEzUaDfOFPG+9XtdsNjNbXq/X5s/W67XSNFUURQqCwJ69Wq1qu91qPp/buSgWizo7O1On01GhUNDFxYUmk4kee+wxrddrnZ2dqVQqmR2Cn1mXy8tLO1Pr9VqtVst8xXa7VbVa1f3793V0dKTLy0vDQsvl0rDKbDbTRz/y7/WSl79Kn/rTj0iSotu3b//DXq+nxWKhfD4vSVqv18rlcqrVahqNRppMJqpWq3ruuefUarUsCBWLRcVxrOl0qnK5rM1mo9lsZj+/Wq0Ux7EFkNVqpdFopHK5rPV6rfV6rccee0yj0cgcQpIkury8tAPdbrfNucdxbM7GO+rtdqvZbKZyuWxOHaAnSbPZTJvNRpPJRJPJRNPpVFEUaW9vT4eHhzo9PdVsNlMYhrawSZJYUOPA+42J41iTycRALmCNAIbjGAwGuri4UKlUMmB1fn6uUqlkxgfwy+fzdtgBvxz0yWRiAKFYLNqaEIQBDY1GwwwgTVP7dxzHBnhxwJvNxpJADnQURVqtVmo2m5pOp7ZvGB7fy1rgREi6wjBUlmX2blmWqVKpaDwe2yEpFAoGAsvlssbjsaIoUrFY1Gg0Ur1eVxzHBirZA+wuiiItFgu1Wi07kOVyWefn56rX6+a80zQ1J10sFnVxcaF8Pm8Hm0CRz+cVhqEuLy9VKpVULBZVrVZt7RuNhk5OTuxneD+SGGy1WCxquVyqWq3aeidJonw+bw7PJ335fF5RFFlgA7RtNhuz3VarZfubpqm63a45IpyxJEsCxuOx5vO5VquVnSe/h/fv31elUjGgB0BhjUmyAVDn5+eq1Woaj8eqVCpmw1mW6eTkRPv7+5pOp+a4isWiBoOBrcnh4aE5eMAmjr7dbms6napWq1miSBKN0wM4T6dT9Xo9A+WA0M1mY8BEkrrdrv1ZHMfa29vT6empgfFcLqd+v68gCMxJF4tFNRoNFQoFFYtFS+xItDebjW7evKlCoaBqtarxeGznEZIjn89rMBhYku79FckwiT17T/BdLBYWZLE/AlClUlGpVNJms9HFxYVyuZz5jtPTUzs3QRDYOnoCg/PY7XaN2BkMBsrn80aGEKTxfVmWaTqdGqAFhJE8QG5wHgEV7A0ESJIkZtsXFxdqNBqWlJNwkpSROEFU3Lt3T51ORzdv3jQbJZhyJnK5nMUAgDkJOnHn8vJSe3t7dgb581KppMPDQ0sAOW/ez3GeF4uF9vf37eyXSiUVCgUL2uv1WvP53IigOI4tvq1WKyMfGo2GxuOxJfyscZZlBhwAXPjo6XRqCcB2u7W4RRKK32Xfz87OLPhLMn8OWABYp2lqMSkMQwMtgB1iNgRMPp+3c8kzAyTxJ54gAWxDHnL+8Vv5fN58vD9DnU5Hzz33nIHw9XqtwWCgYrGo8Xhs5NJisdjxW9gGBFsQBAZ6sQ9sLEkSdbtdOz8ke5PJRFEUaTKZWCJBEsL7FItFs6PFYqFCoaD1eq3FYqFisWg+GLAM1iCWgBdIZEnWAfbYE+AUcF4sFrVerxUEgZbLpRFwxEOeYzweq1arKUkS+158OGtarVY1n8+NMIQQG41GZuMkVvl83hJRwG4cx0bqLJdL85lhGKrZbGo+n5v98iysB0kSMRA/BXHLn+EfIEXBpZCo2NXdu3dt3VmvfD6ver2uF7zgBXrnO98p/+sDH/iAPvnJT5rPLJVKOj4+VrPZNCKrUqkYwZAkie035N5sNjNiFP/BM0ynU8OonD3ODgkn/h1SEAKInysWi5rP53beoigyvItf4T3Bj2maWhLaaDTU6/XMJ4CFsU0SllKppMViof/y7X9Xewc3dX5670FSwKE7OzszduL09FSr1cocFEAZZhfHwwMtl0tVKhUDDjgUHD+OmAy8Xq9rOBxquVyqXC6bE8uyzIJHt9s14E2WCDPq2fPlcqnVamVMMqwsSU6hUFCpVLJgBBgsFouWORPAYXPz+byB9H6/b8kJzjufz9vGcNioAgC+SRB4f4AHDgIWq1AomCOqVqtmeATgfr9vAdc7Z4IGwQQWirUGvIZhaP/P+2L4nonAQXomOI5jAwD8HcAjCdlyuTTGhySAz4njWMPh0PYCu9jb27OfA+QQTIbDoSUDSZJoNBrZ3sPy8G8Y09lsZgffs5g4UhJYnBgMEs4Utuny8lKbzcbYcRwA+0ii5fedgMf74rhZAxzwarUy1gibfng/+WzWpNfrqVKpKI5jNRoN9ft9S6ionsCK8b7tdtuSsvF4rNVqpWq1qrOzs50qDI7OAxSCJuwLbNZyuVSj0TCQzNosFgtjIrGtQqFgz82+Jkli1RcCH4Brs9lob29PQRAYSMjlcgb2OdOePSYZXS6XO4kG6w4ZcHl5qWq1qnq9riiKVCqVNB6PLUkE+ANAqH5wdsrlsjFzk8nEEr00TdVut3VycmIgCp+IXZA0Y3flctnONP50OByq2+1acE+SROPxWBcXF+p0OsYGFwoFS/ohNoIgsCQol8tZ9anZbJo9kQDDKPX7/Z0qI4CeoDoej1WtVpWm6U6lYz6fK5fL7VTCeC7AFQnycrlUp9MxxpoAHASBgQbAMmtCRaBQKFi1ENabBFySkiSxShvnjTMzGo3sLPT7fbNTzh7E1WKxMDupVCpK09T8JuAHQBgEgfkqEl18GNVvgnyapva8VA0IwCQ7/IKhBQySgMDEQmB4/4JNetIgn8/r9PRU1WpV+/v7BvRyuZz9WalU0t7enubzuQFV2FtABok3/nA6nerGjRsaDAb2PEmSqN1u71QTSXA5OxCC7Ae/h91BUARBoOl0amePig8Je7lc1mAwsAQQcDSZTMwfeFIJUgy/DzAHXCZJYswuCXqn0zFgHcexjo6OLLHAN/pEkfPMmgGy9vf39fjjj5vfw68Xi0VVKhX7TtYYO1gulwYeOV/scxiGRoJIsmpTLpezqtZ0OjV7LZVKVhmYzWZGehCPqEBzdj3gxleRaEP0Qnw2m02LOfg2gD5JAz4elQU4kjhw9+5d8zHYL9Uz/PxqtdL+/r5VoUiIiNkQzSSUYCr2G3ug0jKdTvXRj35U3W5XP//zP68f/MEf1Mc//nENBgNLLDudjhE6xFAIAdauVquZ7wBr4Mch5kajkQ4PDw0PgRMB5xCkcRxrPp9bxSSfz+v4+NgSLqo1PqFvNpvm/yAcwVqQDVTOwWz4LhQMEEbgZioz5XJZf/db3vbZSQGMHMAUYE72BuDhiwA2lPTIYtkosjqyObKV8XhsDhkGECdEZpnL5XRycmJ/H2PDyGHSAKY4lUqlYqwToJDgvVgsNJlMrGx3eHioJEnskHDoAP3+maMosgSGYD4YDMzJJklipStK3FQ96vW6PU8YhuZQ2RjeuVqt2oHBUVA9gAUCxAHsyaZhEbMss0yXBKfVapn8AmYYOcVgMND+/r4Wi4UODw+NfYAtJZOkpB7HsTEJVB5w0nEcWymYgO0BOKwD78A6ESg8OAc8YHewb8Ph0GRlHA7WHaac0irAAYDHgYFVXK1Wunnzps7Pz81Zw57AllIJwQFut1sDY9gezBh7hGMCGCBPAWzjgKrVqp0T9pj9B/ggQ4EdQBbBOVsulzsVOQ75rVu3DLAT0AiC7XbbJFatVstABSwEYJxnQ67CWYb1Hg6HmkwmOjw81Gw222HdSPSo9niWdzqdqt1uG4DE8VFdwDESxO/fv2/VBaoI7DXJDZJCzlytVtuRC3q75xdSB1hdAtRisTC2DhANS3T37l2zcc6oZ1N9WTcIgp3Ai73AuGFXk8nEmM8oiqxCut1utb+/b04bXwhQx14A5pxJkk4vNyHRBSS1220LFCTHMN3IuyA1YK0gR3ySiZ3gb5DDACwBjJwT7AO7bjQa5n+RdAAYeXZ8JOvpyQBfmb28vDRgyprB/iNxRVaKn4Q1Pz4+1mw2U61WMxAO+cDzI7cLgsAIDuKXlwkRwGHdYR2xORhRbAZ/HUWRzs7OrPICqKzX6zsyUhIb3odno5IAg4jfJPGiqsDeckYgL4in+AviCQm5B2L83uHhocmG8EmsLe/pKw5UmoiF5XLZziGKhDRNVa1WbX8els9SGcB+WSsSSS9Tbrfbms1m5uNhTXm26XRqRCa4AcLAS57AAh6fZFmmTqcjSdrb29Pe3p5yuZyq1aqeffZZ1Wo1ZVlmwJR3AuTh50hGSAr5c54H6TPx9fj42M7qarUyQgCSxwNPn8TAoHc6Hascct4hYql6gA281Gk+n5sEk4SGCjfnZrFYmN/0ch8SE74XcpAzDQlYLBbt70IUIKPEDxOHiDMkUiRJ+Aiq4oVCQffu3dOHP/xhPfHEE+a7UEmQcPH3AdEkqfgnCEmSXOI+ckDOBgkO2KPX61nMaDQaOjs7s8SB5AoZPRVXYvB2uzUyAgxCMk38wEfj/y4uLgx/NptNq9Jia7w7/rFer2swGHzuSsHJycmOFpTFJ1BSeoXt8FphwCEsAFIdDJIDORgMFEWRHZ6LiwtVq1XL0DDc7XZroNEzQV6uQZmdwEaW7P8+EiNK5egSb926ZXpR5BWUgcmy0abBXpA1LhYLA+OelWaDKSk3m03lcjljfjzgQGfHu1L+JOA9/E5kf2TmJycnOjg4MHaLhAEw7bPMk5MTkx5RuiZ4Iech60TSQ4DxzDj/Zo0pb1HWQ15FxgwQJUCMRiNtNhsDRd5gCX5UnKIoUqvVskAEU4qjpJIDwKREn8vldHR0pOl0appDggyHigoVJXySERIW7BFwwBoQJFqtlvr9vjGcaFKRDniNOIGVQAxIpkwIy8sasdcP99XAZiPBoQyIzIMAwHrjrCj5EzjR9QPmcMAeaGE/7PnFxYWdp1qtZjIsn6zg9KgQAr7YPwI5wRdSwPfu8P+cGfwIzisIAktQSMr6/b5ms5l9B0GGxJ21JnFmbZGD1Wo1c6bT6VQHBwcmEVyv1xoOh2Y3JPQkWuVyWY1Gw9aaKgZrSzKw2WysnwgyA0klPQkADc45TB36Xc4Tdtjtdi3Ji6JohxmkckpiTKJFUkkyj01iGzCz2LyX4LHmJLf4emzbJ3ZUCmAj0e36vrHFYmFyPN6bqh3kVJZl2t/f36m0sJcAZ0mqVCoGavl9AAi2gdwLAgf5Ab6nWCwao3t+fm6yOQgwQCksKZVdf074fGwHmRZnCxvFv15cXNh7kyQSP8fjscUEJI2sMbKuarVqCQLAlgSGdcAuAQnIxLrdrikCOH9U95APUVU8PDzUZrMxOe7R0ZGRZ/hy30NHHACQIVUA5OMLSFpJ2HwPDL6M/UZaUavVdkA0LDNMLvGECiE9jc973vOMucWnEO/oHeAdWA/snkooGAcyAHKGRA7pED2BnggBy5C8YDe8O8kcCaJP9ufzuW7evKnxeGxqBXw7sQYwjx/j+/EZECWr1cowDUw4lU/OJ7EJ5QbYrdlsWrJMQklVj8oWPg3JoZepQShzZv3zgRuwZcgT1CnYPfaODdH7QrxgzVEb9Pt9w1mj0chUIMvl0qSGVMqQcUK2Ur3zUimkivR1skckLvip09PTnTgKNkzT1KS0kL9UkTy+pVqAdJfqJPsBMRTHsfXckIzhh0mgiSlUOS8vL20v8Gmj0Ujv+PZv/eykoNfrWYZMNk0A4aFoEnlYekOzLwFtsVio3W5rMplYkCIw4KgxHjadbBDHSoMbspbxeGzMULPZNAd2eXmpg4MD2+x6vW7AibIWUhycOkERJ0HmRRAHtBDEp9OpJUQcKBaZ0jHyJC9xAcjVajV7V0pGOGxAFUHRM6w4IJrPOCQkQzDysOGw45TrCQiAfhITDt3e3p4x9TC3yAZu3rypOI51dnZmDVkkUThdAIJvgo2iSI1GwyQik8nEmhlhAgD6GCWMDAeHzJ1DRXBmD0iYAPZ8rm/03Ww21jTOASQQwuoC4GjsIgDg5KkkkczRtNloNCyYV6tVHR8fW5UIZ0YDI+wba4PThWEDqGCPBEhK7uVy2SQ4XsIBQ7q/v2/VCJwnDDr7BijkbIdhaDIkHD4BiN4Bgo3XvCJz4bs5RwB5ZFb4BvaWfYWlgQ0h0UVeAYhk/ynTIofp9/s7bCE/CxCiMoDG2VedCIKc/9FoZM7+YUYQ5pNq6WQysXekZMsZ4hfnEkkHwBKpAPIRD6TphaDfBiBdLpd1fHxswYTKCu93//59q+r4c4EEkQovZ9Br0tn/8XismzdvqtFoGJDgPamsUvEg0YSFJaj5NcWmYd8ACTBgJLT4eSQi2EulUrFghr0BvPAx2By/h9yHaicVX3S9MK+cI4D1eDy2XhYGCbBenuEnsSN2wM4B+qlMwlDDXHqJJyQatuK15b6SXCwWjXn2pJYnoehZIibhj0la6HEZj8cGnvjZXC5nvSSsH5JBQCBrRXJLJQO7bzQaOj8/t/VYrVZGeHHG6Q+CvCM2sLcQKay5H1AwmUyMYIvjWK1Wy5IV5MEQMJBO+Jjz83M9/vjjFs8BpV5GAUOaz+c/S6IE+CNR5juptvPzXjmxXq91dHSk09NTixGQKMRhPovz8TCQJc6QFHnpGj1V2D3fSYUFIgp/S5UasgdigPWiqo60GEyH1Mv3S0Bs+L5GbBlb5My1Wi2Nx2PzvWAanpXYBpHBz/rkvtvt6u7du4bf8Pm+AsV7UXEmpoI9SAixMd6V9/TnwQ+XYf3AD5444GdoNieJg6AlXiBbBLN5eQ9J62w2M1IN4vb4+NiSAN6V72LvIKSJ05AqqE6IcVRLsiwzMsgrVyCafMUSNcrnTArOzs7sZQuFgjlRL21g4TFwsrA4jq1sTBMtZX3ALWwfB9M7n3q9btkPZVF/+JMk0c2bN63sSrmbcvXp6akuLy8t+BN46SnAycJWsAkkHLDfBC8cL0aO88fQKHWRPTabTQM1GCu/eF7KzwApHEO73dbFxYXG47FtGppxWGscIAAIic+9e/cM3NKY5PXKMCm+IRNJCMAWpmw+n6tarWo0Gung4MCqGEhvfEZLZgxbCECgCsQ+8P6wNL7BhYAGkwArRlMPrAlBBfBPVQJtMtUb7C2fz9uB8uV2mAl6K3zTF/vs9ZUe0KMjJLgDlv3nE7BJsAC9BEOamEgc2VvW3jsr5GFZlun09NSSWfoCAFE4WBgLpvacnZ1ZAAMA05DowZVvTMZRnJ2dWbLpteYAKSovsLzsEwyXT/y9lIo95Jz5tQO8YvPsM2fi5s2bJt0BNMA+VatVa2Sr1Wq6d++eaSdJwjn/NFsSBPjv9XqtRqOx03jN/np5DMH+8PDQ/Af74KUgvkGVvcb/DQYDO4PYv+/voJoGSIMIALyjp2aClNcAe3aK6UYwc5ATPgmHZEF6ye95TSv+gTNKdY7Ax7mGMKK6AdglqPlBCF7yQSWGfYAt9D1Q+HbPNtJzw9QoCCF6c1hv9oR1u7i40K1bt6yXDeKEatJ0OrXAyh7Si+YHKrDeJEGA206nY36axM33kAG2qfCwd/hI4iAkEMQFiRnf6SvUvCf7RmLtZS/sbaFQULPZNCBNcj2dTk1OUq1WNZvNdiSkJD34BUhDKt9UnXme8XisRqNhdkdsh0xiQh3kmW8ax//hOwF0gHgSIQaHZFmmWq2m8/PznQplvV43qQ7EWbPZNFsAdBL38YeLxcIS2yiKrKqTy+Wsnwjs4SflQXj5iW7sL1UDfMlwOLQzDWmKFAxyBGBPnPCKDUBns9ncGboByAdY05vniQDsk6oLZxlbJW7xcyTgnCv8BXIXqqVUS/D34J79/X2LMfhsbNj34VBB8IQH5w9pZbvdtkTInx16prBnj5sghTkDvlGZdcUHIGGjsoaUCb/iewUhG3u9nvlEPxQFkmEwGFjFjWoYa8XgEmya9UZGzHuCUcHErMdwOFS73bZkBKVKq9VSLpcz25Fk0i+PDYhf3/5tf+dzJwUcUrJ+HpyM/+LiwkqQ6D0pqwF2MAgqCAAR30Tnu6yHw6GVuwhAJBFUAhgVSFmSAIrD39/fN0eHs/Wsc7/f3wHBHGAaVyjFNhoN+3zGUQEwfDIE495ut3eaMmEXSFgA5nwfzAfAOY7jnYZRQBhauvF4bAAc5zkYDAzok+DgiEejkdrttlUKKDeenZ1Z2ZHv45ASVJkCQHD24y23262ee+45S+IoN2IrgBHkXwQmDhH74rv30ShiZzgp5AeAVFhWP0mJQElVh3Xwk41gqMvlsoFUmBdsA9vl+7zcB2YeAM7PACJgp9M0Va/X08HBgdkrjBlrjQzHSwhwBDw7TJif6rBer7W/v2+BDkaa9YaNwhH5yRa1Wm3H+cHM4RSPj49Nt0xAQpbQbDbNWUwmEz3yyCO2/gQlQBSAl7PFGWBML4GHMiuOlgBBoj0YDGw6DjYC6ICY4HsJHJ5xJBBgB77xnVIr6+EnemB7MPoAB4CZr55QgWQ0Kcy8r5IijfD2xrhiEhd8CQ3WBFmvs+Vz2R/sD5u5vLw0n+YriOhuAeLIHL2UA9BDEnZ+fm7yBQIle+pHNuIPCPycaSq8sFb1et3GJpPw+KZUngmbYQ1IArEZXxVC1uGrlSS4VCV8FZLvqNfrdi42m40ODg4MwBwcHOj09NRkhlQ1iUnIY5ALcB482MAn4UuofJPo0ABJ9YMkkKAP0PYMMlI0ElRiK1JTbIfCsGMaAAAgAElEQVR18dpiD6i9L6MizPdVq1WLe8RC/LKfaAZQgRwgdvFn9XrdZIEoDW7fvr0j7/LyCGIASSM2CqniCSYq8hA3yBfx2XwmTCzkDfaGnISeQM4+8qher2fVG6SLgEfkzQw7wB74ffwHsR8SCN8AOekr9cTVh5l99gC7xZdQter3+4YDGC0NgTuZTCwx4TwhcST5BkR2u10dHx8bAUiFkLjFmvthF/hWyDrfywO49VMLAbEe13AOmdgGCeaTJEA2AzI4534kNucKUpieIM4C+45qgqTFT07EHhi1D9nFWF+qvSR69GzQt4qiggTSkyfI4QHd9PBBjFHRnc/nOjg4MEk1PhQJHDGAiqQfhcoZhXzBVpbLpZHVxCD6OMHkKDZ6vZ6NXqeB+hu/4Ws/Oynw4AJ5BsD46OjIXhwgxFgrWH+cDeVhnBd/x5dyAMySbK4rWSJZJweYsgmHjywTh9JsNndKbKPRyCQWBGkAHw6J54ANwBHCuN+4ccPYufF4bOweWl3e92F2l4y63++bLpBA6tlGHAcGz2H3LJ3XKQMiaQpBR8shHAwGOwDh4ODAxv/B4HFwSVJgKWAFfBmZ9cyyTGdnZxaQCAIeZFDKJNmCvYTZ6/f75lTJaAkA6OZxKFmWmeESjHDagEYcDmAfZ/iwfg+mAXALiLxx44YuLi7UarWMbeag+3VFI4xjZaoL91J4qRdsE0Ct3++rXq/bBBSCNewnz8ZnMQaVvgpsnbPAZ7COOAPYIAAAiSNaWgA4yRZMAyAKZ4gMgP4gbIXJDrDinFvkAewlDCMlcZIzklOewZ+5OI6tdwPwTiMc5X7YVsgAkmUqGSTwlGYpp5O0A8IJBPgvWEwvxyAAw1QijfSTkrxvYk8AJxAJ6FmREzAK04/IpUGv1Wrpxo0bOz0HNHD7NYOdJEjyfB5kUElCysG0LipnTNDB58CqYUckK3wnVUtY3u12a02K9HQA9gChvjJJmR2g5iUf5+fn9n4kuMy3R3bqZS9e1sdZI/EBkPkJNsgU0BATlyBxIK38JDN8ih8B/fAEGOwWNs5XIvgu/AyAnYoPdyhUq1V1Oh2TcHjpAsyyv1eF9aWZnz0iKftcUrxKpaJer2f3n6zXa6tuMTYYmRNxCiaeHgwqJkwAZCwt74LP2m63xkY3m02r7CDFIYaQuNBfRrIFEcC9RbwDcZLqrv95QB8xBlaaJIJY3ev11O12tV6vxch1kk1fWfNrjP+CYCCxRzbJ9EAwDWcD0sAnZuwnQLDRaJjfw7975QQkCsDUg2zYaYgdgCfnEH9PRQt8Ag7zZI63cz+QhcoTNoO0Fd9O/PPN+AwtAKj6agn+mX2BKIEIQCr08FAR4hqkiL/Hw8u+HlZBQNqgNvF3AniSm/Hw+AyGzHD28K1U0FhvpNXgIZJZ/u0nZFFZwBeCL9mv+/fvW9zCVvHXJBBJkhiG87JIlCtgRH9XA+cTORfEBpUfb0echTAM9S3f9PWfnRTcu3fPHBoOkwchs2L2abfbNQaSsgYNDv4iIBw8pQ0YO0r6XmeLNo0SEYEWx+nn1AIaafajggH4hgWZz+dWXsS40E1y6YefAQwgBNRzmRP/jdHDcFKe2dvbs1Ks15/iuHzjr9dp+1F1lMyYuU+ZicPk55UTGHk2wCA/y4xhGCZ/cQ/OH0ANQ8+6wewDtCkB+wQGxgQ2C0Ds9f2ADN8DQkkPXStOkqSEg0rHPlp/P5PZswIAA8CcB/EwADQmAzwItH70JGW8+/fvm2yMPcBW6RVAZuIvdEL3D8AABPlEkF8kGJwf7AkH58EPDBwVON4XB44kCCY3SRJzLj7g+3Gg2CXvw1r5qSzMtYbpI4nlEhd0xvRmcLkK4IbSqWeKkB35Zn2YDLTf2BAMpr8PgnI9yQaTmPzlRcvl0i6QKpVKdhcINg1r5+/OgImZzWY2ZhHASpUK1tSDbBKozWajXq+ner1uySLJNoQBZe7VamXTJPgs9gYAUKlU1Gg0jAXzfSYwv/wMLDWECmvtmVSIFJgsn5gOh8OdigiAhnXykiK/FvihXq9nwdFPnKEnih4T+q0ApRBOjJ9kmAMxgncjgFJV8vPcWTs/eQl/DxkEAYVMhL2dTCbGAiMxYRoQ+4qfi6JIBwcHRjQBnPz0N5hn/F8YhubrAFLYNNUX5F9U4judjq09iYjvE2KKF038VGP85BqIEtaNc0qFGh/gJ8ewLySxJDxowQFOHnT4y0GxbU/IIT9l8h2MKhIj4lY+n7eJfrC03W7XgCR+E/9IlaXb7VocRe6LH2edJ5OJbt++beAIuwRsTSYT7e3tmUQGMg4JKA3BkATYAsoDfo7eEfoz/F0uSZLo9PTUmnTPz893RpBCesDqc95Ze+I+GAgplq+u+0qzn97nx4vS34EshdHW/qIy7ISz5fvG8H/EGuIQn+fBLjGG8wcoBpB6PEKy5C8y9cMnqLD5ex98bxBVEEgRKvlIcr2klZjvZTuQVwBmYg0JHGeJiZz0XfgLDKnQ+0oXz3J0dGTxFN/hJx6R+ENIUBWjOd3LiHhXKon+HiwqW35yF0MakJzRq+CJOwjdk5MTfcc7vu2zkwJunmXDyM4ajYaee+45y5rJIP0IPHSFgEM6pwE5lIfQU9LIywLBslGm8Q0gMGRsFkYFuwNIhBWkCQ7ABuMJGPFj0nyDI0EI1oWSDs6Hrn2YHZi5/f19u8yGZ/FlRQ5Go9GwKUvdblfn5+eWFaMd92MGC4WC6YInk4n29/dtCglBm4DDunntMuvJAWVWNckS8gEYLBrvADE4EvbKT96A0YQhTNNUN27c0Hg8NsfPYYZloOGKJkjf7U8ZC6kYwBcwjFyIYMg6AxjYbxwYB93rTbFJnhdw6LXglPdIQh999FHT7bEnNJ2jw/SzirlEhMPNXsKYEmxITHFESLl4ZxIYnhOQ6xkSGEvkalRMYCY9CwIzt1wud8bHsleANBhZwD+AhcTZy3SYQw0w9nPo0UD722SpQvp+INgntKqAdM8iA9Q9MwxbzZlrtVpWGYMBYTSbv4ME5hP/RSDiLhGCEwEJAOrvTyHxZ79J8Px4OuRYfqY8EykAnKwp1RzAFeV1qo74PC9jgxgAyPrJYTT5M23NS+H8XQr4NU+6oFH242exWQgA2OB79+5Z5Y7LnQCdzKSHYUZXSxLj7zvx05YuLi70+OOPq9fr2eQNABasJgkHZwA2n0DnGzCZmMW5JsgjzfCXoQGQAP0Pj4zmPJGA+/GD+A+SVaSwfCdVKYgRD24gW0iYCO7cQMotwsQVP5qXW3gBb/gCnyyxHtxKj0zO969AyvEugFLODGvCs+I3/cQrL/lEKsnoXHwYSRh9S/1+3+yZ2Mu58VVOP+2Kyj0kFgkGhBe+mHjgwbufykIVEDyBD+A7OTceZ0Dc+QoOPgIlBZdNUhHBLyN98fbOGvsb5Tkj/pmw31qtZpJJvh8ZDXiGBBQfhP/xPoPRxr6fh33lHpuHG9z9yHpsBvLTTzvyg1r81EJPIJMAkrxATuLz6A1DmQAphKTH3ykCpqFPhKozyQB+BpwHDiHu40PBoJCYkCSsKetHJQIpL34SfMk7xHGsk5OTnXtLIHrwhV5e7G+CJy7znJwt4gI2jNQIPEa8wR9xLw/ngfPo/RmJ9uccSbper00HSjmJ0t/t27etCYMFJgsjc6Ek5rVWaET9bYk4GdhkkgiCM4fPGywlLy5PQs/mb2BkVCeABzYGeQJB0l+q4zNIFrvdbhuoRyfr53X7WdB+LB9G5S8ZYfF9csNaMdKRcZNUNy4vL82RtVot62vwc20xTD6HvWHUGo7Ly3LYr+PjYwMk/h4B3wzuA32r1bI52TwDpU4m9lA+ZcSinzEOG08psdfraW9vz5w+mS7gh9nlvB/gDQd6enq6U2JnzUlicTZ+ZCjBFafU7Xb1whe+UC9+8YvVaDTMuaKxBjzRbP3wBSB++g92CsjHWfPeftY2YAun7++ieHhGPVUaghb2ylr60jUBx8/AZn1gMvwFQwBX5CA4Xd778PBwZ3TZI488Yv/tWQ4SMH+zOJUQ7IY9AoDAqPD9vLfXYPqxfwwaIJnCmSMPobkU8E7Tq6/OoJvk7NJkSEO6l5I8DBZJ1nwwAPzid0goqAQCYmExSdJh53wTI6QJsib2jvfhDLZaLXt+JvnwnYCXdrtt0hy01/hUXxUCWAMQsBMCOYHIyyfQ2XIW8TXMSvfBZjKZ2JjHer1u6+yHEnBWAEjIkyBCGOvMCF3AFEkiNoDkDNadNfGyTpqbqboBjvhsH7MAKP5OFeScgBikJrByADEAHj6ZCoivUjKRisqPJ8QYVUqfB8SMHwjB+YcZ9vr/2WymTqdj34t0IEkSdTodk14gw8B3wo6TXOIn/E3baJPb7bbJ0VgvElbeHabZ31/BbdC+Ykiiw774tYL88WMtGdZQLBaNdBwMBjv38LAHkGeeBeYff2cNdzzAZvd6PavK8N2A/eFwuHNbL5jEg3eAOxImYgZ+j0o+iRCkAj7PJwzsA1IsKnz+Yj1fXYB09GPNId78hDJGU/JeYB/vA/zUNkiRh/cA8Mtz+cvwiF9+bC5x2yeMfA6jfMEYYCBiZKfTsao/n39wcGAyL846CQnDNejFAKxzGR+JBHgH3+arovgZX+3wN9yTpGAzfigPZ4P7LMA3/h4Rf5mpl4f6i+gKhYLZFHZMxQvVDT2/AHzO1r1793Z6gv0ENchR/OTnnD507949y2RgLjAiForslYC12WzUbrfNedEsyyFmhJnvuAfM87meJeOw+A5uf7U1necwJQBgnDwaLoANEg/GhPlZwJ5do8xJaYmDh2PHMcJoA/B8j4IvxxGI/QUiD/czoKnzFwwdHx9bSQg9NkmMTzBokkLXyHfBOPiA75tRJ5OJdaX70XGUchkDxkVvOFYSFRh6AqNPSvwEEf4fI0RqwJ4BijF+WGqcFQfDX+IB6MBJAf4AlYyZ411whr55k2d92ctepp/5mZ/R13zN1yiOYz355JM7jAhsgme3sVcYa/SbNE7yTABgDh32AJgkgA2HQ7v3gF4B1tWfB6RbJLTIbmBbfLDzSe50OjXgi4aYCQ+esecCMiRWSBBo7KeMDusFqPNVJWyCSgRnl4QRx+sncp2dndmUFMA9k5aQbvAOJGzo0pnYRZUSIM8+8As2GekM4JO1IOnyYArig0oBpXUCO/ZEkvrwLdvY+HQ6Ne04CRs3w3rJEvbkb7/2TX4AmLOzM/O9sPfYEkCHc0B1zOuDCczMn2d9fLBnz5CY0IiJD/TVFZJgL8uBwSXQ0+9EJYXKAz6eSkOv17PzwIWEBFRADBIpnpFGVuzF623xcxA5/uZyD/Bh0vCdMPw0V/sBGsg0fE8O1QCSLkAVFV0qsQRwkjqSdH8JE2AD+RLSPMAxAIX9AKQCROhf8Xes8BnclUMz8Xg81uHhoV0mR6MtYzGJPyRIk8lEg8HAmiNhGYkP2CDnmGovVTUkUUiUYKI9U+vBK37I2xsNpJAkNN7jL7nBG9/l7yyJ41jn5+f2roxiRnLIhCHWl2SfuE/F+fDwUOPx2AA64yXxY/wsfUeca6YykoRyIZ3vHfLYhTOLTGQ+n+vo6MiqtoA+qp4AQS8bpFoP3vFJEL6MmMpzQpDgE4njvoHWj1KnCkLS4vuY8P1+qAPTlOgdARvBnvvpaTSOY5v0eSCB4QyRNPOOJIyQMZBknngkHkRRZJORsGP6qPDtJBTsKTaJgoOkCNIZXPK5lAxU5/xIft9PQbUWfMk6QpqBN05OTmwaIsmCvyOlUqns9ByBHUkSkYAhnex2u/qGr/ubn1s+5G9ng1Hz2jayY4IaD+NvVqU86Rk+36iKwXI5BMCY74LhzeVyun///s6sYl8qZ6P9yCoawnxXPD0QgONut7vTPMrtk5Ru7969a5pF5vp2Oh2TJbFRlFApmQ0Ggx1NMRIEWBt0aqwrWjKkIb7MSoD22n0/+hEmBPadNYFd9bPXHx6LhoF4LaS/oRPNJ+w27KjPMumaR78Nqw94x+H5WfC8E86FA8J0BQAMgJLg5MvTgCQYLgAlowZpQoehhTHmUMP+/8RP/IQ14X3e532ecrmcPvWpT6nX6xk4Y52oYgFqSA7ZFz+5Bwkbe0SJFZDLhCfslIyd0qTXSqPf9FNYcMbYmJdV4DSoPAFmASdUpVhPf5EXE39YIyZqUXXhnLBn3JtBczJBEqkEzh4ghA4dUoBgS1XOl4FJPv1wAkAATpOGbvT3/q4CAAvfwfqRQPFn6DBhfP1ECyon2D7r7mVZJHJIEPwtwb5qwPnEDvf29nYal5vNpk5PTy2hZu4+YIqElIQM30OZm32GwAEUsR4kqiRlvoGRRAb2muCK3JH1oNHZ9574W8V9rwN+HhIJAggWDAkHzwlB4KfCJUmiVqtlgNprfQGYfuQkv4+P9uwZ648uGRLFy/9oCux2uyYN8+NlqZ74pux2u63j4+OdCVHEtL29PfPvXj6IThmAOxwOjaiCEOMdAD+w5hBCJC5UhpmjTm8dYMSPQIUlplpG0tbpdOzMk3T6iS9UESBsAOf4PZ7VX+hGtZWqJn774ODA+hpgmiHIkIvSQzaZTIwEODg4MIXAw1ITelUgDfAb7Xbb+pOQNAPSOb/EcrAA1XDAJrGYfYfUSZLEhkv48aC+yZuqKZI7P9qT3x+NRjs3SdMTx+3l2Ai2hTwGDIBf8BfDUXGg6Z146vuXIG8gQkn+GGCCNBN5S6lU2pm+hy/1E4JoyPWN7chLfaOtr0YRk/xgB//ZkKiMNaUp2UtfSTD93TReps1ZY/24t4E+FmRnYEwvP6fiwZl4mFnHf0wmEx0cHKjf79u58D4DX0el1Pf+gNOIDeDFhxvfsSfOHsNJwBTY/PHxsflaP7oYXM05RibGd4/HY33bt37zZycFaNpZeHRmsMYEAYImMgJKj1xqQ6ClJOIbbnEKGBwOi0Wg2oDGi+YdWAPYCb4X0EqS4seM+tstSUQ44JTHMbrxeGxlQAACCRCAbLVa6caNGzs3bHqJi7/1EkfPhmKwfCbMLuwXZSWMDiaPbJpD52+5BOjScEJzI/tGQnZ8fPxZc44f1hnDtuMkMCi+zzN9/oZjDgUHBkYSaQwGTuIBcPTsHe9C4ONnOfAcJByhZzcLP9JQ9L0VZV+RqPXBsrEQBA4/K5+pSs1mU+9617t2EovnP//5+rmf+zk9/fTTOzaOnSHLICD4i07QMPqxaTh+EhP6JngXnEer1drRzubzed2/f99YazTllDWn06mxodj6+odyyn9fXclbS4rfn5qThmEuFAo7F6aQhMNmkrwDSGEeOVuAEcA6FRUcpW/AwlYp+zPJBCZwb2/P/ABngh4MPttrQX3zF0nK6emplcwBujBAXADm1xMGzEu0jo6OtL+/vwP0/E2f9XrdzhLBkP4HCATsg94cqov+7JDIIZdA+uLlFf7yINgepldRul5/YyD945K2XxZq+dNjO7vYGIywnwPvJ//QW0QJHelFu922NSSRQY7hR27ClHLvAc+J7fq7aPAF/F1/y7MfF4hUht4okmnWlRGo1WpVp6en2tvb22le50z5CS1HR0fWJMu64s+p7FHZIOEHFEIgtdttSwYBeewj8Wk2m9kFctghiRPgLv2RvKLvrqiwn9P8d6ZWZcCuHn30UWPv0PrX6/Wde10AWH7QBXfi8PyAJBhcP+qacd2A4jAMrQoD8AYkMDqRWAoOgFzD5/tRj+w7kjQIFCbh+ObP8/NzSzBI6Pg9EibuV9lut+YrwAfETJIOeje8BMzLRDizvhdqNpsZGPVAjDNArIbIAH943frDbD5+ibHAXhIDsYN94cd8NRjADIFDRR8FA8ktZws5E6QBsQeyZ29vT6enpwZM/c2/JNPYEkkqiQb7hl+gug62Yd/ZQx9nWENiOqSQJ/N6vZ6BZT9qHbzoE1ISBCZeBUFgU4M4cz75gdSB2EbWCtHmGXQUESSoVNFYX5JZkj1kjPQcMcKYs8z58oMxqKCDCfHLVGD9hX7YBVgVLEQFFvvq9/tGFjA1E6Dvpw1BQoE3kJlBwkOagiHX6/Vn9RQEr3/967NPf/rTxgZgpOVyWbVaTScnJwa+/fXWaEZhcmEc0YaS2Z+dnVnZn1vhGE/oG4op4xGceTmyUj9LnqDpL3fw8ggmHXltPZMuAKuwPhglJT5GkvoJCIACGG+vY2TdKKHDAD777LNWquO+A89CEXRgCAicJAaFQsHmLiNT8HO5z87O7M+73a5NQkLjRnbqy6L+wi/fLM6UIZrLYBQvLy/V+V8PtfgS803afHyh5v9csGdED8tEmizLFLwxUuEftO1n0lmq2jdfyVBGo5EZPheuIL3yzWJk+/5+C0Df/v6+Nj8YafOyUNvzjQrfutkZgwlDAchgBvJqtdLb3/52/cAP/IA92w/90A/pve99r05OTnYuPqEC4BkAtOTVf9TS9ksfSGJ2fqWSlpnCXqrgE6mmPzpUJXxwMQslTfYdmwDE43xxdlQlCHwwJ8vlUoUfbSh8eV46T7X621cNTN1u15r9+E6YkTt37qjVahkYY8QsAQ4GEhvzfT40OkVfltPi1Vutb0phJVSYD6WtpGmq7f21gj9Mtf9bLT399NO2ZgAn+nlgxjmbJBMefPnKAEkmd0IgbUFWCGggAHu5GecexpLgyESQSqWi09NT035yDgmKd+/etSCCfQNqPLBnJru/hRcfhUPmnX1FCOdPhYbPCMNQWSVT/J6aslao9Gdniv9VttPgOnvNQpVX1ZU9HmnbTBVUIikXSOtM2SBT9pm1yr8QK3sutSQLgoRmNpI81tjumvmqolbfHkvBtVn/6kLVH0929o71N+37W4tK3xRLN2JlVSkIA2mVKe1vFX1qq/V75ipM8zvkBtLNyd5E+S+rKXxpTsnNvIJyKBUDKc0UjKXseKvsNxfKPvCgBwY/1u12r5rzf64kVQP9VX+tf3Gs5T95cJkVfj1JEo1XYyV/r6LNF2QKm7GyOFAwT7V6bqXCBwKFv5tZs+/5+bndLZPL5ZR7a17b7yxIi0z6+1Nt/2Jj/giWdzQaaW9vzyaLkbxiF9PpVOEbYmVfFCt+PK+wHSorhwqu91eDTPrMWtnPraWnUuuBYh8Xi4UODw/1zDPPXNlyLa/sHTkFX5CTmoEUh8pmW8V3Aq1+eari7yUGdi4uLqy/h+QlTVOtw7WC7ygo+4JQYTOS4lCapQrvZCr+Sqj0Q1tLcIiZdiPy21rafkfhP7wp00z6momdf2yEs4GMFWLDVz2n06mB3iRJNPmbCwVfmFNwI1FYDKQoULDIpFGm9C/WSt4njT423ElYSHx6vZ46//xIwZc+eOb0X0+V/OyDpnWSGhtq8RN7Cv5aomyWKv3PL60niOdbvHIlvSySbkXSYai0FVydr02myetPTJUA8CXBt7svfragoBr+le179YtjzX/oSvpJH0l4O1T8n5akl8TK3UyUlQOFxfAqbo0zrY6XCn5zqfD9mVWkAZ5cGurJI+IYfW4QDDTr4jPBGEhCITWRcHlA7e/eOTs708HBgQFfYho9AlSgR6ORDg8PLfbRw0N/jo+x/uJPFBuM4sXmiBHElkajYdJZYgt/DgGOzXpikfcEi3m/T5xhmAm3QxOLIWboUSS24z9RiPC5SD/95Wn8LEM3qKCTlA0GA/3JHz2hl7z8VfrUn37kQaXg2WeftYyMW9Iof/h5tr7EQ9dzmqbq9/vGiMEaomVGmgIIx/HCgJI5o92FBfPzdBnFRRe+n8nrb5wFzPlbcmFIeW7YQ7IoSon+ngR/VTUZIYwqIxhhDWCkMW4/dSKKIgOjVCb8BA0/nYlmTKQkaNx80yIaPnoCKPGR6XvJlr9O2+uh/aUlgEV/eROsSJqmVzrKL5orePRB42bYiDT4pXM144Y1yGArBIT07YmiGw9Ac7gONPvJB5c++ZsQCYiM1sPe2D+qNQBMkpnwzYmyg1DhTNq+92ruNrc98xy8K+wtYxg/8YlPaL1e6z3veY+eeOIJnZ+f70wVYj9LpZLJNEhaSqWSFl+yVfRo8rk9cSApFyirhcpeECl4U6LJJ4dqLZpWaWo2m+YgKeECFEkwWQ+vl/fTtuI4VvLmotL9QOlsq/KvJTtMSfwjZeW+ty69Odb6/5ppNpvp4ODAmEA0ilQJzs/Ptbe3Z4wiAIVELHtRpux/LGj5pkDZYagQgBJIiiQVAgXdWMHn567WZys1zus701lIkv19BgRO33jnS6gEVH/ZD6VqNOi+38hf8OSbFX2yNR6PjRWF0fa3gsII8TOU8rEDL9EA1M/nc63/WU7hd5W0+U8kvW9lPqTb7ZovgbHifFKN8BOGbATnO3MKXpooPd9q8/0TOzNMuir9n3vKXhApawUKSqEUX+9HHCioBApux1q/VlqN59p8crXDVpKI4Wf8qNhZayb9d6UrUM4ZfjLV6nfntmYkT6xF9D0FpV+Xl/YjqRhcJQQ8SzWUHo8VvSGv+Z+PFRw/aOgD9BXeVVPyn1UUH+auEoLk+ufD4Oo5uqGCVyZKXxho8xsL8yMAwdlsptzbygryf/WkYPurcxWfK5j8Zza7OifhYajwfy8rfUV8lWjFgRRKSgJF3VjZq2It8jONfuvBJBwCb6PR0ObTa21elSnYj7Xdz1T9g6JVe/GzVMr91DB88cXFhfb29pS9u6zoBYmCdiQVQwVuf1UJpNux9PqcFrOp8k8lO/d+QKDFcazy7bLWPxwrfEVeqoT2PkE+VNYNFL46kfKplh+e75BlJLD9fl/pjVT5f1aXXpHbXZN8oKwbav3KQIvcTIsPzcwm8KmlUknZiyR9Ue4/uCfZOlP08w+kun6aENjk4aldxE1Gmk9fPlPwP5UUfHFBYTdWULhKCNhDVa/ORvqGUOHNSJVPFE1FQKJRLBal10Y7sS86ymnyUwPr/cMvZ1l21XD/xnE+sJYAACAASURBVJy2XSlYS+F7NztEweRvLBR9f/XqvO6FykqBJdxKA21/ar5z9wA+EpC83W4VfV1B+v9h38XfiLT987X18sznc5W+v6HcV1YUXZ+zwM6ZpOKVfUevLGjzgkzljyTa29szwqxSqVj1iaopF3eCBbFllAnL5VJHR0c7UiwqNjDi9CBRBcbnggchf/20v1qtprt37xpo9xUlSLf5fK5ut2sSTcCyl0CiQqDK72MxsQsSzV+CeXZ2Zn8PCazvqfPkC/IdYhufQ9+Zl/py8ayfksaFoHfv3tXNmzfN95EAkUxBuNHPBMHnLzcFV6PGmM1mn9VoHFM64xf3BJTLZbsJkbISE0OQuPCS/AyghgyPZi2qAJQvYCvRwPEzyFgocaOXOjk5MUkRWj02HqaKUg5lOWQFMIJ+gohn+9HsM2WB5AhJFeUbv7lIK6hIoK2mkZemVZIdNOeM62Nz/Jg5Sq3eoGh8JEOFufXaMaZCtNttWxu0iIAouuCZHOGb6GAmKE1jaIwrLaqmDcYxv3Icta9v6PKfX+7ct0ASMYkmyr/kyh6yWaagFEh6MHOc0j+lL0C+v2ADmwMAxnGsu3fvql6vW2Zd+Z6rCU1PPfWUjRjF2ZCw+tGKlJrv37+v9773vfqFX/gFK0fST0CFglIuSRTVKqpcxaCo7fWS9P/BPXX+qPGgWfgleU3/o7miN5UU3s4p2sup9M6mxu8YGxuIpGc0Gml/f98Yz3q9rjt37pjkjr3jjhB/M+zp6akKWaJQeWVuOgbOQEGk9bXTo5nLlx5JRAHfR0dHBgQ8aNxsNkpfKW2+q6Cgev0AJxtt/mip8KOpNp9ZqXqjpvGL5sq9Kq/gxXltu5nSv13Q+P1jYwphiEhCaN4bDodGJCBPw7GRJHJDM3t77949K6n784l/oaJHooE8h1nqDAbgHZGYQXzgM5jljI8AhAAeSCBIJDtqayspcyVtGr4B0ThqyBTADTIkSIewESp5TVOZpO2HFztVOZL39OpoKXh2q/zHQw0+3FNyP1b8+QWtXiflXl5QUA4V/RcVRU9NtfjjuU2N8vpSZA4wvMXvbmrbCKWzjbQXXxfAMhWu1xFAy7sM3zJR+Q2dqyA7l5J/nyr6w0DrO0vpZaE2bw6VvTBW1g6U/6661t80MuaqUqmo2WxquJ4pe26j9Km10idXSu9lSp4JlX9BQfOXbxS9tijVAkWvzqvyfQ2N/vHAbJvm4Pjrl1Zp4lIg7GQ0GqnwvILiH68rSwJlFxvd+OiBznVuQZWmy+x7C9LNK2Ab/slG8/eNFd2T9Lqcoq8sKWiGSr66ptKdtUr/rmQVvclkYmMb498pSM9PFH1+ovneTMEzD24XpS/ETy/zN9ezx7GaUiZlz260+thM4R9uVTkra/3SVNvXRwpellNQDlT8tpb0l1MtP3Yl06O6zLps35VTePMaTH5speH7eirfy6vyhrqWbwmlZqDtVyXK382U/frGJgaenZ0pyzIdHR1p8t9vlV6vSfqxpdJfXCq7s1HxP65q89ZYagaKv7qi8v2i5v92YncXwRSHWU7A6+UPDxT+amYMPROkrs7lWuPrXkXuRzk/P1ej0TA2F6kTiQKVs263q9VrNsq/s6m0fPW+2V9ulP3eUvk/ibU6WWr90lTBaxLFry4oyIeKvrykYWOqzfdO7XnwG2W1FPkicCdQ7r8paf5jDyb/+Bvjs2t0HSpQ+doeqBTmVJDGW+k0U3Zno8qTRY2+eKb4rxVNZnt2dmaVDj/RBvImedvaKnu+ulcul3X37l098vJHNP4XqbIkUNBLNf/lifmzSqVytU7rtQrPrRU9lUpPpVrfXat4J1H0eKzLly2UvLYk1UIlrykq/a/nuvu/3LUm9TRNde/ePbXbbZPTgCnASkyCBBPR4Ay+azabNkWy0Wjo9PRUBwcHVgVHovjII49Yvw/xApJ1Pp/r7OxM3W7XpKaQi0dHR/b9m83GJpn5SUtcFAr+YC+RjvlEk8t4Z7OZ+SvuAkBiSg+pv4WYvjV6wSB8wMlMa6LyAXaGNGJSkp/UCRHsJW5gaF9No/mZW6Qhz6hM4r+R/j38K7p9+/Y/5EbQUqmku3fvGnNLwEUydHFxYdkXzbE4OPRaaHqRAKBJPjg40HA41OHhob0I2i3+gUVlkgbgf7PZ6PDw0CRKjLvyenwMl8UBfAHk/A2Cfj4xzpnMET0al6HQVEQTCkAFrZwfEciEBa8r901+VEV804q/cAa27mFmnxtyz8/PP6v8468lB7jAyNLZDvgpFovWVOTHxsLGdDqdnfnfkhS8LpYevXKN2cdXCo4iZRWp8sG8XebCWNXVaqX4G/LSKxJpnim+mylrB8rWmdKfWZjDOzs7s/GfXGLjb8WmNIvuHNbWOxicB+wb+mlkJvQqIHnjdlzWmcMJ+Pc3GfqbOb2chkvRJq9cKLyuFDSeKEn3swea+5OVcp+JFPz2RtnrYgWVUEEzUvWjeaXDrQUSPstfWMQewuxY2fma0UWnSEl086ZQ0UFOmmUK3rfemfSweaOUdUNl01Tznx7t6JopkSOV8pOBvGwuyzLlHylI/0NRQTOUMin3wVTrvz/W5omllk8utBluFPQDrf94qcLv5LS9O1fwwliRItU+WLCpLFTKvMQB0MEe+oZ5LjMksfZVSBIwnpNxrj6RIonwFxbiMwiSrIm/RM/rqgHPTIXx5x67wf80m02lbwqVdUMF00zx+7Odv+fljF4+hmaZZAmwHX9TUdkXxldSoH8y1eJ0YfIGQEH+jUWNf/xCi3800vh3RrqxPdK6t5aeTJX92kpJJ6f0hVfMcL6daPvBlVVTqX4wPq/dbl+xaH8rUvblyRW4f1+q7RdcTzH6i4XmvzneuQ+FS8CS76hInWt2+McGmr57qPA00F5xT2e/d6ro1zPpNaGCViRVQwXHW1UvymZvaZpq8qsjpb+0VOmjeQWfkopneQWTQKu/XGr1O3NFf5YqfH1yJY9qB6r+emHnEiPsgN4B/Bj7mM/nFXxzIr3kWv/8oYWmvzbaWQtJSr6mqOAtV2Bh87GFlv/tSMlxrHSQqvFsVctPTxV9aV5ZTsrdSLR+38xYTPYmjmNtP75W7quKyoqBklKs8W+MjPkFtDNAYzgcGumADXQ6Ha1es9Xix4eKfmSjyqeKWjy1ULgIlT2ZavGBicp7RW1fGEhxoG0rtYoE/jsMQ4VvzWn7FVe2u/3YQsH3LVU6LiiaRNp8fK3yc4nWX3xV3QyPIoW/srUBEADB7C2h9Ja8JUnrd02k51Jlw0zlZ4q6/LO+cq8tSrlAm6NU4Qe2dub5Z/LCmQqvumYVfn+t+JnQzgPVvfPzc4t/7XbbmkYhdRhiIUkHBwd2bm2CSyfS6vtiqX7lq8JfWSv6wbXOf/NU5UVZ6SRV/aKq8HdTFf400vYVUlYKFD2SKKqEGn7wajIRoLXz5q7Wt678dXCRSqVA4VFO4b/d6Oz+2U6sWq/Xit+caNuV0nWq5b+66v9hIEPlvKT1v5mp8MFY0e9L2V9sFb0xUbp3JZE7/qfPqtPpWG8QsstKpaKTkxOT8zKkot1u291ArNHs69YKXnIVl5Lfl9a/u7DzBRYr/UGi2c+OtP7tpZrHdQ3+tK/Z+UzTP5+q+smSNn86V/D6REEuUNAOlftl2ZQaGHNIGyZ4gWmQmHPemCgGM00vB9JVnh0JEDEITMk58ZesomLg8yFtsAMkuvSvgvGYCkiyCuGFfNxfTsp6EkuJSTRl+0Z1iGJILWK070fj3YjnyPHoDaH/0E/6PD4+NgKXyUv+NnMmHnKJLzJ17kEA9HMXGOQIpDE+fDabfVZPQeiBHePKYMLRxwK0kOFQgrm8vFSv17OSDyO6yHx8wx2JwfHxsWV+6LkYj8joKeRGvkMaIPfwpVEwdiQ2XATjL5yirIq0B32cv8UQoISkh9IlJftbt25Zxo6siVIj+kvPWgLEMSaArJ8uAWvE5xIwALR+PKFv0Dk9PdV0OtXe3p7tCZILbnpcrVbq9/umn2M0KXpLplZIsgur0O35wB/qgUGn/255RYPeiLR+2cbeBQZ+Pp8rfdV1c/efbbTaPpjNjzzi8vJSh4eHCsNQJycntm7FYlGHh4fGfPjbAJGTTadTVatVdbtdVatV2zuYYCYyoVf2unQqBegAWVMANxNrWCffCEYFi4blKHjAH221tVtuT09PTRa2HW2lJ69rLKE0fny60wRHxQTn0Ww21e/31el01Gg0LGHDtrlEj5Ltlf1el9x1JQdCMjUcDrVRan9GkxwghGQV+QXg9u7duyadMif2bSWpc63b/YNUuXdnxv4BmH1jWPpbWxW/P9P2qaX1kMAu4zDRctLUhp/gcrg0TfX000+bvAqb5iI6QB9BBvDCtBtfXSNAkCST1KP/pnGVaTAwaiQEJIV37tyxRkqSfyYMQQxkTkHGWfcNgSQryJCoHjDCD5YnTVNtXnX9Kc9sNP/03MAHgXK73Wrz9rFyvxKYnUOaUOna/OhcGl9PqbqZ2vhAKhaAKZNOvKCk4GsLUiCt3z9VNHmgX84HiV2OxsVTh4eHV5XN1jWrPpbCn99YoBoMrqQW+Xxeyccf+JHsscCYwdFo9CARur6LBPBMM3G5XFb6qa30zPV5aoQ24cZLS2DfYAjxC9iDXnEt+dtk2vzCzBLMxx9/3BLT3OuuhxBspOhfrk3mlM/ndXx8rOQTsTYfuyZtbsXKXhns9LZB6KxWKy3+7Er+tvj8zKpvEESMTj48PNT+/r71vVG1nc1mmr7tXPGvysAAtgj7nP3Y2vY3eiTZuTSQ/qDtlwb2PulPzneaiNfrtc5++1Tp9ftsbwXSFwRGHNgttq91n/EvH0xTYprf/tNd+4zgVqzgr4c2eMKwQJB/0MuRra25vFarWTzjtlkqDFy6BKA5PT21Mc4AwUKhoGazeSXf+DtrqXVls5uPLDT74aHNzMe/XFxcXDHyf7bQ9H/rKVtdn9qvKOjg8UO73f7g4ECL7IEfXP7ala2pHkjvSEz6MRgMDKius+0DuZ2bksUoYuSSTPFbZ1aDt4ZWf6stOAQJMfiCaiLJPHaT/PWS2Xf2f68MjKOHZ724FwTmHkI2SRJFnwmlp6+eK2hcxdBWq6U7d+5Y0yoyboD1w1JrNPz4q2azqXa7bZjt4dhcq9VsKhCkHb2ZSM6Rh5NEQshCloHd6A0BAwCi2QPI3UajYfJglBtUbLjvhT1gj3u9nj0bo22xP2RDYE6ISrAfAxdIdoid4FHkWZvNxhQ5rGun0zFiDOIMvMcYVGIL9haGoRGlpVJp584PiEd/R5X/FfsPxzh4YcYclkolPfbYYzo5OTHjYga6vwAJZwIIwVmSrR4fH9vDwKwge2CjAGB+TCdVh0ceecRYYPR3ZEt0svsGKa/5Y9wXjR44Vn/BF0Afzb+fAY8xkwWz+blcTs8999zOBVJ+TBXf42fWc2MtozQfHj9FsGIkYhiGNoYqCAKTUQ2HQ5uXSwc9ZTkSEuRLlNWYmnTz5k3TufGOaPhZ/3w+r5k2CnWV0OSejrS5t1F4M1b6ZbHmv31ppfrxeKzNy1IVb183zH1wIb3l+q4ABWYH7H3ayFT6xrq2L4uVHcYKy5EmeSnZNrUebJR7MlD4bwIVnroCeffv39fR0ZEWi4V6vZ5y/7Sq7LrJNvmW1JpzWq2Wwv+jrOD5OV3eWWvzto3qX9mUvjqn9EaorBAomm4V/WWm5F9nOv3dEwNI/qbrW7du6ZlnnlGtVrMmVMrL22xrpfA4iE1y1G63VavVdu7EAChGw1DJNYvBvsLqLR5fKvq6kirP72rVjLWIMhWXXa1PNsp/KK/sJzPTodPDUSgUNLv+9FiR0vRKehX8V3nlv7b6IDjtxWp+5Jb9f0V1TT65VPQu2U3ksCi1Ws30xHZZ3xeFCiUFy0yzHxkpN4tNn0oVgDMDeEp7qVY/cMUq00QFAA6+Itbyy6XCIx2tSqGiLK/ZVCreaSp5fyb9fmaj3haLhWlWaz+1r/ULElXv5BV+x1J6U6j0rbF0GCrLZdIwU++JSxV+Mm9nIvkbeeX+VknL25lUvmoUXX5mpdZPtnT5mUurSNKEz7kcPXap8ve0lD4/Uq+xUBYH6ixvX+3HExUFP53uXHaVvSOnzdc+mGilvUjZ/3PV/xJd/7P55FLRdy9spCoOn6SdkZTlclnBzUC5m9fs7pNr60vCf45GI2tKhGDws9FXq5U6nc5VJWhW1bYqBflA8XVgYpIP5WokBvm/V5OqUvAXqUo/HWv5hqWk4rV8KNXFRd/K4FQZ0jRVOt0o7iZKs9S+Gy26XdCUZsrrampdaVSwAHZxcbEDLB4mpPi8Xq+nbZpdsVhr7Uyrw19BAEGkcD9KkiQqvbqi0Y0rG8yeWmv20YkxdJAnYRhqc/vqTKXHazWOa8oKD6ba8O7BR7bSq698W/a6WJsPP7h8yk9bmn9yqtwrSwpbkdavzRR9KDUZA31m/X7fAAHVMggg4hgg2F+kxaz8ymxfQTVSnI8UXLOaSMEuLi6Uf6ylQFJwkqrybFmj1WjnPqBcLqfCH4Zavfoa/H7pVtnvr+zvrNdrJY9dN5eepFp+YmXEG7G81+up8Aclba8/I3hdTvET8c4I7sARKYECA15U0rxmnJ4nejzy+bxOT08tZpE8LJdLPe95z7uq9mur+AtXV1TIItP2X0wfyG6ux0WDCSCBav9vRcEfZ1q9OlBYDrX8+q3y73lwmV+mBz0QuQ+FSr9krfDRnIIvyWn8U30V10WbsrZcLrXURqEiRQoVXftDmHEICQDbZrNR3uiDwPAMSgiAPoC30WgYeQJByt8/ODjQ7PMW2hxdk3dPraVnM5MmgneQ/OD3wSWw8bDf8zRVLCldZ6pdy1lu3rxp/TsktH74BRJE9g2GHvYaFhy2nTUAjB8eHhqIJwlCTk1yzz76UdAmpbxm2CGYwRtgUgjFXC6nk5MTu5PJKw6QvfvJTJAsEEmPPPKIJQYQPCTZDCrhLp2nn35a+/v79mwAfd6PMchUx7g1/d69e1dS7OuEhuSt3+8b1rpx48YOJq1Wqzo5ObFK6dHRkSlWKpXKVeP89dQukll/r4//FfopJw/fTktDx3K51OnpqTGlMDuUwf1FRTDjPABZNKUijB95EOML0afBlMNYB0GgN7/5zXrjG9+oRx991HTEfA8sIOwbo+64EAegOx6PbaNHo5F145Pxwgz7G4AJBGj8ubsANg8n3Wg0bDwXIN83c8JqouPn8FANQBsHa01iBYDmgg1uuCOjzefzajab1sjop0fARHo9INk5pUdYiNlstiPNgHUcj8cKXKUgDELV/+TqnbOXXnX3kwBWq1WVvrouRVJ4mmn9gYWia0Vmpsye7ezs7CoB+f8oe/No2dKqynfuJnb0ceL0zT335iUhIYVEGkGQUvpGOkFU9NGVBSpWlb5RallVT+qVqM8OO6wqq8pSsEUBpRVBOpE0BRElpU1IJMnbnS5OGye6HbGb+mPHb8UXCQ59d4w7yCTPidjN961vrTnnmuvlkaIXt+Q9tCx/JShyD1/KSkUiGzyuqsnPluQ/IbChK0dHR3bQpFMkPNXMNhO2K5x+ryep/NKq0h8qK70lKJq7fMlvBsofFmr8qkCtR8/QRXda7he+8AWzeyU4hGGoO+64Y44pOJwc28bFdlGSKs2K0pt9662I/2Y4N1yHDa/vChS+pi3/cWVpLVRWKp6DV/UV3i9S+pKSvNfWbLIt6NxoNFI0PbS8KTLVaDQUesE/3YDmFQkbDZo
<p align="justify"><strong>Introduction:</strong> Knowledge of the physical and surface properties of most NEAs lags far behind the current rate of their discoveries. Still, asteroid surfaces and internal structures are very diverse, and knowledge derived from a limited number of asteroids typically could not be safely extrapolated to a large number of objects. The situation calls for an alternative approach that permits estimating asteroids' properties for a much larger number of NEAs.</p> <p align="justify">The Demystifying Near-Earth Asteroids <strong>(</strong>D-NEAs) is the Planetary Society STEP Grant 2021 project aiming to develop a novel method that directly characterises asteroids primarily from ground-based data. In particular, the project's objective is to develop a model to characterise surface thermal properties.</p> <p align="justify"><strong>Methodology:</strong> The idea is based on the Yarkovsky effect, a non-gravitational phenomenon that causes objects to undergo orbital semi-major axis drift as a function of their size, orbit, and material properties. The effect joins together the asteroid's orbital dynamics, composition, and physical properties. Our idea to derive the surface thermal properties of near-Earth objects is built around these facts.</p> <p align="justify">Theoretical models of the Yarkovsky effect allow predicting the semi-major axis drift, assuming a set of input parameters is available. On the other hand, astrometric observations and orbit determination procedures allow detecting the semi-major axis drift in motion of an asteroid. Therefore, at least one asteroid's property that determines the drift rate could be estimated by comparing the model&#8217;s predicted (da/dt) and measured (da/dt)<sub>m</sub> magnitude of the effect, as given by Equation 1:</p> <p align="justify"><img src="" alt="" width="472" height="69" /></p> <p align="justify"><span lang="en-US">Especially critical are </span><span lang="en-US">the </span><span lang="en-US">t</span><span lang="en-US">hermal conductivity uncertaint</span><span lang="en-US">ies</span> <span lang="en-US">that </span><span lang="en-US">span a range of about four orders of magnitude (Delbo et al. 2015). </span><span lang="en-US">It </span><span lang="en-US">is </span><span lang="en-US">also a key to proper estimation of the thermal inertia, </span><span lang="en-US">which </span><span lang="en-US">could be diagnostic of</span><span lang="en-US"> surface porosity and cohesion, </span><span lang="en-US">and, </span><span lang="en-US">therefore, </span><span lang="en-US">for the </span><span lang="en-US">possible </span><span lang="en-US">presence of the regolith layer </span><span lang="en-US">at</span><span lang="en-US"> the surfaces.</span></p> <p align="justify"><span lang="en-US"><strong>Results:</strong></span> <span lang="en-US">The first</span><span lang="en-US"> results obtained by Fenucci et al</span><span lang="en-US">.</span><span lang="en-US"> (2021)</span> <span lang="en-US">are encouraging but also intriguing at the same time. We found that a </span><span lang="en-US">small </span><span lang="en-US">super-fast rotator, near-Earth asteroid 2011 PT, should have low thermal inertia </span><span lang="en-US">(</span><strong><span lang="en-US">&#915;</span></strong><strong> </strong><strong><span lang="en-US">< </span></strong><strong><span lang="en-US">100 J m</span></strong><strong><sup><span lang="en-US">-1</span></sup></strong><strong><span lang="en-US"> K</span></strong><strong><sup><span lang="en-US">-1</span></sup></strong><strong><span lang="en-US"> s</span></strong><strong><sup><span lang="en-US">-1/2</span></sup></strong><span lang="en-US">)</span><span lang="en-US"> to maintain the high Yarkovsky drift detected from astrometry. </span></p> <p align="justify"><em><span lang="en-US"><img src="" alt="" width="733" height="344" /></span></em></p> <p align="justify"><span lang="en-US"><strong>Future pros</strong></span><span lang="en-US"><strong>pect:</strong></span> <span lang="en-US">This exciting result opens the possibility for further studies. There are, however, several essential features that are not included in the preliminary model. To fully exploit the potential of our approach, it is necessary to extend the model by including, </span><span lang="en-US">for instance, Yarkovsky correction for eccentric orbits, heterogeneity in object&#8217;s density, </span><span lang="en-US">or </span><span lang="en-US">variable thermal inertia along the orbit </span><span lang="en-US">(</span><span lang="en-US">Rozitis et al</span><span lang="en-US">.</span><span lang="en-US"> 2018</span><span lang="en-US">)</span><span lang="en-US">. The D-NEAs project will address these issues and develop a robust model which will apply to a much larger number of </span><span lang="en-US">asteroids</span><span lang="en-US">.</span></p> <p align="justify"><span lang="en-US"><strong>References</strong></span></p> <ul> <li> <p align="justify">Delbo, M., Mueller, M., Emery, J.P., Rozitis, B., Capria, M.T.: <strong>Asteroid Thermophysical Modeling.</strong> Asteroids IV, p.107-128, University of Arizona Press, Tucson, 2015.</p> </li> <li> <p align="justify"><span lang="en-US">Fenucci, M., Novakovi</span><span lang="en-US">c</span><span lang="en-US">, B., Vokrouhlick</span><span lang="en-US">y</span><span lang="en-US">, D., Weryk, R.J.</span><span lang="en-US">:</span> <span lang="en-US"><strong>Low thermal conductivity of the super-fast rotator (499998) 2011 PT.</strong></span><span lang="en-US"> Astronomy and Astrophysics</span><span lang="en-US">,</span> <span lang="en-US">id </span><span lang="en-US">647</span><span lang="en-US">, 2021.</span></p> </li> <li> <p align="justify"><span lang="en-US">Rozitis, B., Green, S.F., MacLennan, E., Emery, J.P: </span><span lang="en-US"><strong>Observing the variation of asteroid thermal inertia with heliocentric distance.</strong></span> <span lang="en-US">MNRAS, </span><span lang="en-US">477, 1782, </span><span lang="en-US">2018.</span></p> </li> </ul>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.