Due to its extreme applicability, 3D geological modeling gains more and more space in the oil industry, being today indispensable in the process of geological and geomechanical characterization of the subsurface. The objective of this paper is to present a workflow for structural modeling using a structured grid of Corner Point Grid geometry, exposing the possible gains in quality and robustness in the final volume of a model specially built to characterize the overburden. Through the interpretation of seismic data and well logs, the initial data to start building the model were obtained, extensive quality control processes were carried out to ensure the resolution of possible errors in the mesh due to the non-verticality of the faults. As a result, it was obtained a grid where the structural geology was honored, making it possible that distributions of properties carried out on it will be much more consistent with the reality of the oil fields modeled.
RESUMO: Na indústria do petróleo, é fundamental uma boa estimativa da resistência da rocha para uma análise adequada de estabilidade. Entretanto, a obtenção de testemunhos é uma operação dispendiosa. Para extraí-los é necessário interromper a perfuração, demandando tempo de equipe e aluguel de sonda. Sendo assim, é preciso adotar uma forma indireta para prever a resistência das rochas, por meio dos dados obtidos dos perfis, aplicando correlações adequadas. No caso das rochas carbonáticas, essa avaliação torna-se mais complexa, pois envolve o estudo de estruturas heterogêneas. Esse trabalho apresenta uma estimativa de resistência para carbonatos análagos aos do pré-sal brasileiro, com base em conceitos de classificação de rochas carbonáticas, análise crítica de correlações existentes na literatura e comparação com resultados de testes de laboratório. A partir da avaliação da correlação de Prasad e do estudo granulométrico elaborado para rochas carbonáticas diversas, é proposta uma metodologia para estimar os parâmetros de resistência máximo e mínimo de cada litotipo analisado. Dada a escassez de ensaios de laboratório para o contexto de poços de óleo e gás, a definição de uma faixa de valores permite uma abordagem probabilística que auxiliará na previsão da resistência da rocha.
Modern computational tools and Machine Learning algorithms allowed automatic identification of petrophysical and lithological properties using geophysical profiles and seismic data as training set. Once knowing the input data limitation and established the parameters, it is possible to create in an agile and efficient way 1D and 3D models to determine petrophysical, mechanical and geological properties. Our goal is to apply neural networks to develop a 3D goemechanical model of a complex portion of the evaporitic section of a Brazilian offshore field to be used in well drilling. The modeled properties were lithofacies, Dtc (compressional transit time), Dts (shear transit time), density, Young's Modulus and Poisson's Ratio. The mechanical, physical and geological 3D models were distributed using neural networks techniques while the input data were property cubes produced by seismic inversion. The 3D models were considered adequate because they were able to identify the heterogeneity of the different saline lithotypes despite the area's complexity. The quantitative validation were also adequate, with errors rate under 5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.