Mimicking mammalian apoptotic cells by exposing phosphatidylserine (PS) is a strategy used by virus and parasitic protozoa to escape host protective inflammatory responses. With Leishmania amazonensis (La), apoptotic mimicry is a prerogative of the intramacrophagic amastigote form of the parasite and is modulated by the host. Now we show that differently from what happens with amastigotes, promastigotes exposing PS are non-viable, non-infective cells, undergoing apoptotic death. As part of the normal metacyclogenic process occurring in axenic cultures and in the gut of sand fly vectors, a sub-population of metacyclic promastigotes exposes PS. Apoptotic death of the purified PS-positive (PSPOS) sub-population was confirmed by TUNEL staining and DNA laddering. Transmission electron microscopy revealed morphological alterations in PSPOS metacyclics such as DNA condensation, cytoplasm degradation and mitochondrion and kinetoplast destruction, both in in vitro cultures and in sand fly guts. TUNELPOS promastigotes were detected only in the anterior midgut to foregut boundary of infected sand flies. Interestingly, caspase inhibitors modulated parasite death and PS exposure, when added to parasite cultures in a specific time window. Efficient in vitro macrophage infections and in vivo lesions only occur when PSPOS and PS-negative (PSNEG) parasites were simultaneously added to the cell culture or inoculated in the mammalian host. The viable PSNEG promastigote was the infective form, as shown by following the fate of fluorescently labeled parasites, while the PSPOS apoptotic sub-population inhibited host macrophage inflammatory response. PS exposure and macrophage inhibition by a subpopulation of promastigotes is a different mechanism than the one previously described with amastigotes, where the entire population exposes PS. Both mechanisms co-exist and play a role in the transmission and development of the disease in case of infection by La. Since both processes confer selective advantages to the infective microorganism they justify the occurrence of apoptotic features in a unicellular pathogen.
Sand flies inject saliva into the mammalian host when probing for a blood meal. Understanding the initial vertebrate reactions against sand fly saliva is important for possible interventions because these insects transmit diseases to humans and other animals. Little is known of these reactions to New World sand flies. Repeated exposure of BALB/c mice to Lutzomyia longipalpis bites leads to local inflammatory cell infiltration comprised of neutrophils, macrophages, and eosinophils. Total IgG and IgG1 antibodies react predominantly with three major protein bands (45, 44, and 16 kD) of the insect saliva by Western blot. The injection of immune serum previously incubated with salivary gland homogenate induced an early infiltration with neutrophils and macrophages, suggesting the participation of immune complexes in triggering inflammation.
In the present work we analyze the antigenicity of Leishmania major ribosomal proteins (LRP) in infected BALB/c mice. We show that BALB/c mice vaccinated with LRP in the presence of CpG oligodeoxynucleotides (CpG-ODN) were protected against the development of dermal pathology and showed a reduction in the parasite load after challenge with L. major. This protection was associated with the induction of an IL-12 dependent specific-IFN-gamma response mediated mainly by CD4(+) T cell, albeit a minor contribution of CD8(+) T cells cannot be ruled out. Induction of Th1 responses against LRP also resulted in a reversion of the Th2 responses associated with susceptibility. A marked reduction of IgG1 antibody titer against parasite antigens besides an impaired IL-4 and IL-10 cytokine production by parasite specific T cells was observed. In addition, we show that the administration of the LRP plus CpG-ODN preparation also conferred protection in the naturally resistant C57BL/6 mice. In this strain protection was associated with a LRP specific IFN-gamma production in lymph nodes draining the challenge site. We believe that these evolutionary conserved proteins, combined with adjuvants that favor Th1 responses, may be relevant components of a pan-Leishmania vaccine.
Neutrophils are considered the host's first line of defense against infections and have been implicated in the immunopathogenesis of Leishmaniasis. Leishmania parasites are inoculated alongside vectors' saliva, which is a rich source of pharmacologically active substances that interfere with host immune response. In the present study, we tested the hypothesis that salivary components from Lutzomyia longipalpis, an important vector of visceral Leishmaniasis, enhance neutrophil apoptosis. Murine inflammatory peritoneal neutrophils cultured in the presence of SGS presented increased surface expression of FasL and underwent caspase-dependent and FasL-mediated apoptosis. This proapoptosis effect of SGS on neutrophils was abrogated by pretreatment with protease as well as preincubation with antisaliva antibodies. Furthermore, in the presence of Leishmania chagasi, SGS also increased apoptosis on neutrophils and increased PGE(2) release and decreased ROS production by neutrophils, while enhancing parasite viability inside these cells. The increased parasite burden was abrogated by treatment with z-VAD, a pan caspase inhibitor, and NS-398, a COX-2 inhibitor. In the presence of SGS, Leishmania-infected neutrophils produced higher levels of MCP-1 and attracted a high number of macrophages by chemotaxis in vitro assays. Both of these events were abrogated by pretreatment of neutrophils with bindarit, an inhibitor of CCL2/MCP-1 expression. Taken together, our data support the hypothesis that vector salivary proteins trigger caspase-dependent and FasL-mediated apoptosis, thereby favoring Leishmania survival inside neutrophils, which may represent an important mechanism for the establishment of Leishmania infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.