Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry.
Mitochondrial and Y-chromosome DNA were analyzed from 10,300-year-old human remains excavated from On Your Knees Cave on Prince of Wales Island, Alaska (Site 49-PET-408). This individual's mitochondrial DNA (mtDNA) represents the founder haplotype of an additional subhaplogroup of haplogroup D that was brought to the Americas, demonstrating that widely held assumptions about the genetic composition of the earliest Americans are incorrect. The amount of diversity that has accumulated in the subhaplogroup over the past 10,300 years suggests that previous calibrations of the mtDNA clock may have underestimated the rate of molecular evolution. If substantiated, the dates of events based on these previous estimates are too old, which may explain the discordance between inferences based on genetic and archaeological evidence regarding the timing of the settlement of the Americas. In addition, this individual's Y-chromosome belongs to haplogroup Q-M3*, placing a minimum date of 10,300 years ago for the emergence of this haplogroup.
Paleo-Eskimos were the first people to settle vast regions of the American Arctic around 5,000 years ago, and were subsequently joined and largely displaced around 1,000 years ago by ancestors of present-day Inuit and Yup’ik1–3. The genetic relationship between Paleo-Eskimos and Native American, Inuit, Yup’ik and Aleut populations remains uncertain4–7. Here we present new genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyze these data with new data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Employing new methods based on rare allele and haplotype sharing as well as established methods4,8–10, we show that Paleo-Eskimo-related ancestry is ubiquitous among populations speaking Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that several key migrations connected to the origin of the Na-Dene peoples, the peopling of the Aleutian Islands, and the spread of Yup’ik and Inuit across the Arctic region are genetically linked to a single Siberian source related to Paleo-Eskimos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.