Background Several cancer-susceptibility syndromes are reported to underlie pediatric rhabdomyosarcoma (RMS); however, to our knowledge there have been no systematic efforts to characterize the heterogeneous genetic etiologies of this often-fatal malignancy. Methods We performed exome-sequencing on germline DNA from 615 patients with newly diagnosed RMS consented through the Children’s Oncology Group. We compared the prevalence of cancer predisposition variants in 63 autosomal-dominant cancer predisposition genes in these patients with population controls (n = 9963). All statistical tests were 2-sided. Results We identified germline cancer predisposition variants in 45 RMS patients (7.3%; all FOXO1 fusion negative) across 15 autosomal dominant genes, which was statistically significantly enriched compared with controls (1.4%, P = 1.3 × 10–22). Specifically, 73.3% of the predisposition variants were found in predisposition syndrome genes previously associated with pediatric RMS risk, such as Li-Fraumeni syndrome (TP53) and neurofibromatosis type I (NF1). Notably, 5 patients had well-described oncogenic missense variants in HRAS (p.G12V and p.G12S) associated with Costello syndrome. Also, genetic etiology differed with histology, as germline variants were more frequent in embryonal vs alveolar RMS patients (10.0% vs 3.0%, P = .02). Although patients with a cancer predisposition variant tended to be younger at diagnosis (P = 9.9 × 10–4), 40.0% of germline variants were identified in those older than 3 years of age, which is in contrast to current genetic testing recommendations based on early age at diagnosis. Conclusions These findings demonstrate that genetic risk of RMS results from germline predisposition variants associated with a wide spectrum of cancer susceptibility syndromes. Germline genetic testing for children with RMS should be informed by RMS subtypes and not be limited to only young patients.
Both intact fetal cells as well as cell-free fetal DNA are present in the maternal circulation and can be recovered for non-invasive prenatal genetic diagnosis. Although methods for enrichment and isolation of rare intact fetal cells have been challenging, diagnosis of fetal chromosomal aneuploidy including trisomy 21 in first- and second-trimester pregnancies has been achieved with a 50-75% detection rate. Similarly, cell-free fetal DNA can be reliably recovered from maternal plasma and assessed by quantitative PCR to detect fetal trisomy 21 and paternally derived single gene mutations. Real-time PCR assays are robust in detecting low-level fetal DNA concentrations, with sensitivity of approximately 95-100% and specificity near 100%. Comparing intact fetal cell versus cell-free fetal DNA methods for non-invasive prenatal screening for fetal chromosomal aneuploidy reveals that the latter is at least four times more sensitive. These preliminary results do not support a relationship between frequency of intact fetal cells and concentration of cell-free fetal DNA. The above results imply that the concentration of fetal DNA in maternal plasma may not be dependent on circulating intact fetal cells but rather be a product of growth and cellular turnover during embryonic or fetal development.
Microparticles (MPs) that circulate in blood may be a source of DNA for molecular analyses, including prenatal genetic diagnoses. Because MPs are heterogeneous in nature, however, further characterization is important before use in clinical settings. One key question is whether DNA is either bound to aggregates of blood proteins and lipid micelles or intrinsically associated with MPs from dying cells. To test the latter hypothesis, we asked whether MPs derived in vitro from dying cells were similar to those in maternal plasma. JEG-3 cells model extravillous trophoblasts, which predominate during the first trimester of pregnancy when prenatal diagnosis is most relevant. MPs were derived from apoptosis and increased over 48 hours. Compared with necrotic MPs, DNA in apoptotic MPs was more fragmented and resistant to plasma DNases. Membrane-specific dyes indicated that apoptotic MPs had more membranous material, which protects nucleic acids, including RNA. Flow cytometry showed that MPs derived from dying cells displayed light scatter and DNA staining similar to MPs found in maternal plasma. Quantification of maternal MPs using characteristics defined by MPs generated in vitro revealed a significant increase of DNA ؉ MPs in the plasma of women with preeclampsia compared with plasma from women with normal pregnancies. Apoptotic MPs are therefore a likely source of stable DNA that could be enriched for both early genetic diagnosis and monitoring of pathological pregnancies. (Am J
Because prenatal testing offetal RhD status by amniocentesis carries small yetfinite risks to thefetus and mother, this study sought to determine whetherfetal DNA in maternal serum could be used to detect fetal RhD status by polymerase chain reaction (PCR). METHODS: A retrospective analysis was made offrozen serum specimens from 20 sensitized RhDnegative pregnant women (rangingfrom 15.0 to 36.0 weeks' gestation) who were confirmed by serology at birth to have been carrying RhD-positive fetuses. Eleven serum specimens from RhD-negative individuals served as controls. DNA was isolatedfrom serum and used in two PCR-based methods to detect a 99 base pair (bp) DNA fragment specfitcfor the RhD gene and a 113 bpfragment specfic for the RhCE gene as control. RESULTS: Overall, in 14 (70%) of 20 RhD-positive fetuses the 99 base pair RhD-specfic PCR product was detected. There was no false positive detection among the 11 control serum specimens. CONCLUSION: The results illustrate the ability to detect fetal RhD sequences in maternal serum of sensitized women. Moreover, the findings demonstrate that fetal single-gene disorders can be detected prenatally by using DNA isolated only from maternal serum.
Objective An inverse association between personal history of allergies/asthma and glioma risk has been fairly consistently reported in the epidemiologic literature. However, the role of regular antihistamine use remains controversial due to a small number of studies reporting contradictory findings. We evaluated the association between regular use of oral antihistamines and glioma risk, adjusting for a number of relevant factors (e.g., immunoglobulin E levels and history of chickenpox). Methods We used a subset of the Harris County Case-Control Study, which included 362 pathologically-confirmed glioma cases and 462 cancer-free controls, to evaluate this association using unconditional multivariable logistic regression. These models were run among the overall study population and stratified by allergy status. Cox regression was utilized to examine whether antihistamine use was associated with mortality among all cases and separately among high-grade cases. Results Antihistamine use was strongly associated with glioma risk among those with a positive allergy/asthma history (OR: 4.19, 95% CI: 2.06–8.51), but not among those with a negative history (OR: 1.59, 95% CI: 0.95–2.67). There were no significant associations between antihistamine use and survival among cases. Conclusion The current study implies that regular antihistamine use may increase glioma risk. However, several larger studies are necessary before definitive conclusions can be drawn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.