In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded α1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.
Summary
Infectious agents such as the bacteria Vibrio aestuarianus or Ostreid herpesvirus 1 have been repeatedly associated with dramatic disease outbreaks of Crassostrea gigas beds in Europe. Beside roles played by these pathogens, microbial infections in C. gigas may derive from the contribution of a larger number of microorganisms than previously thought, according to an emerging view supporting the polymicrobial nature of bivalve diseases. In this study, the microbial communities associated with a large number of C. gigas samples collected during recurrent mortality episodes at different European sites were investigated by real‐time PCR and 16SrRNA gene‐based microbial profiling. A new target enrichment next‐generation sequencing protocol for selective capturing of 884 phylogenetic and virulence markers of the potential microbial pathogenic community in oyster tissue was developed allowing high taxonomic resolution analysis of the bivalve pathobiota. Comparative analysis of contrasting C. gigas samples conducted using these methods revealed that oyster experiencing mortality outbreaks displayed signs of microbiota disruption associated with the presence of previously undetected potential pathogenic microbial species mostly belonging to genus Vibrio and Arcobacter. The role of these species and their consortia should be targeted by future studies aiming to shed light on mechanisms underlying polymicrobial infections in C. gigas.
The Vibrio splendidus clade has previously been associated with epidemic outbreaks of various aquatic animals, as in the case of the cupped oyster, Crassostrea gigas. To investigate whether involved strains could present a clonal origin and to identify possible alternative background carriage animals or zooplankton, a large epidemiological survey was conducted on isolates of the splendidus clade. For this purpose, Vibrio strains were isolated from various samples including oysters, mussels, sediments, zooplankton, and sea water on the basis of a North/South gradient of the European sea water zone (Ireland, The Netherlands, France, Italy, and Spain). A total of 435 isolates were successfully associated to the V. splendidus clade using real time polymerase chain reaction with 16S specific primers and probes. A multiple-locus variable-number tandem-repeat analysis (VNTR) was conducted on all isolates based on a multiplex PCR-VNTR with a set of primer pairs designed from the V. tasmaniensis LGP32 genome. Preliminary validation of the primers on a set of collection strains from the V. splendidus clade confirmed that the former V. splendidus-related LGP32 and relative strains were related to V. tasmaniensis rather than to the type strain V. splendidus LMG 4042. The VNTR analysis was then successfully conducted on 335 isolates which led to the characterization of 87 different profiles. Our results showed that (1) the high diversity of VNTR did not enlighten significant correlation between a specific pattern and the origin of collected samples. However, populations isolated from animal samples tend to differ from those of the background environment; (2) oyster mortality events could not be linked to the clonal proliferation of a particular VNTR type. However, few different patterns seemed successively associated with samples collected during peaks of oyster's mortality. (3) Finally, no correlation could be seen between specific VNTR patterns and sequence phylogeny of the virulence factors vsm and ompU that were detected among strains isolated during as well as outside mortality events. These results, combined with incongruence observed between the ompU and vsm phylogenetic trees, suggested both large diffusion of strains and massive lateral gene transfer within the V. splendidus clade.
Mollusks-IMC International Collaboration IMC infection distributed among different taxa, including the phylum Spirochetes, the families Anaplasmataceae and Simkaniaceae, the genera Mycoplasma and Francisella, and sulfur-oxidizing endosymbionts. Sequences like Francisella halioticida/philomiragia and Candidatus Brownia rhizoecola were also obtained, however, in the absence of ISH studies, the association between those organisms and the IMCs were not confirmed. The sequences identified in this study will allow for further molecular characterization of the microbial community associated with IMC infection in marine mollusks and their correlation with severity of the lesions to clarify their role as endosymbionts, commensals or true pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.