Abstract. This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.
We present an analysis of the evolution of the smoke plume caused by the Black Saturday bushfires, which started on 7 February 2009 in the Australian state of Victoria. Within 3 days this smoke plume was located at altitudes between 15 and 20 km thousands of kilometers away from its source region. Standard explanations for high tropospheric and lower stratospheric absorbing aerosols are either volcanic eruptions or pyroconvection. We performed a detailed analysis of various satellite observations, forward trajectory calculations, and meteorological conditions during the fire episode, yet we could not find evidence of either of these standard mechanisms explaining the observed plume evolution. Pyroconvection observed within the initial smoke plumes remained predominantly below 10 km altitude. Furthermore, there are not active volcanoes in the region. We postulate that the subsequent rise beyond approximately 10 km altitude during the first 3 days after the fires started was caused by absorption of short‐wave solar radiation in the plume. Observations indicate that the plume was highly absorptive and optically very thick. One‐dimensional plume height radiative transfer calculations with realistic assumptions about the optical properties of the smoke show that the plume could rise to 16–18 km after 5 days and up to 20 km after 10 days. The plume rise exhibits a characteristic step‐like time evolution that tracks the variation in diurnal insolation and resembles an escalator. We argue that this is the first time that this mechanism, known as “self‐lifting,” has been observed on a large scale. The key features of this mechanism and its implications are briefly discussed.
Absorption of shortwave solar radiation can potentially heat aerosol layers and create buoyancy that can result in the ascent of the aerosol layer over several kilometres altitude within 24–48 hours. Such heating is seasonally dependent with the summer pole region producing the largest lifting in solstice because aerosol layers are exposed to sunshine for close to 24 hours a day. The smaller the Angstrøm parameter, the larger the lifting potential. An important enhancement to lifting is the diffuse illumination of the base of the aerosol layer when it is located above highly reflective cloud layers. It is estimated that aerosol layers residing in the boundary layer with optical properties typical for biomass burning aerosols can reach the extra tropical tropopause within 3–4 day entirely due to diabatic heating as a result of solar shortwave absorption and cross‐latitudinal transport. It is hypothesized that this mechanism can explain the presence and persistence of upper tropospheric/lower stratospheric aerosol layers.
Abstract. The ultraviolet (UV) Absorbing Aerosol Index (AAI) is widely used as an indicator for the presence of absorbing aerosols in the atmosphere. Here we consider the TROPOMI AAI based on the 340 nm/380 nm wavelength pair. We investigate the effects of clouds on the AAI observed at small and large scales. The large-scale effects are studied using an aggregate of TROPOMI measurements over an area mostly devoid of absorbing aerosols (Pacific Ocean). The study reveals that several structural features can be distinguished in the AAI, such as the cloud bow, viewing zenith angle dependence, sunglint, and a previously unexplained increase in AAI values at extreme viewing and solar geometries. We explain these features in terms of the bidirectional reflectance distribution function (BRDF) of the scene in combination with the different ratios of diffuse and direct illumination of the surface at 340 and 380 nm. To reduce the dependency on the BRDF and homogenize the AAI distribution across the orbit, we present three different AAI retrieval models: the traditional Lambertian scene model (LSM), a Lambertian cloud model (LCM), and a scattering cloud model (SCM). We perform a model study to assess the propagation of errors in auxiliary databases used in the cloud models. The three models are then applied to the same low-aerosol region. Results show that using the LCM and SCM gives on average a higher AAI than the LSM. Additionally, a more homogeneous distribution is retrieved across the orbit. At the small scale, related to the high spatial resolution of TROPOMI, strong local increases and decreases in AAI are observed in the presence of clouds. The BRDF effect presented here is a first step – more research is needed to explain the small-scale cloud effects on the AAI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.