We provide field data of coseismic ground deformation related to the 6 April Mw 6.3 L'Aquila normal faulting earthquake. Three narrow fracture zones were mapped: Paganica‐Colle Enzano (P‐E), Mt. Castellano‐Mt. Stabiata (C‐S) and San Gregorio (SG). These zones define 13 km of surface ruptures that strike at 130–140°. We mapped four main types of ground deformation (free faces on bedrock fault scarps, faulting along synthetic splays and fissures with or without slip) that are probably due to the near‐surface lithology of the fault walls and the amount of slip that approached the surface coseismically. The P‐E and C‐S zones are characterized by downthrow to the SW (up to 10 cm) and opening (up to 12 cm), while the SG zone is characterized only by opening. Afterslip throw rates of 0.5–0.6 mm/day were measured along the Paganica fault, where paleoseismic evidence reveals recurring paleo‐earthquakes and post‐24.8 kyr slip‐rate ≥ 0.24 mm/yr.
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
We applied a joint survey approach integrating time domain electromagnetic soundings and single‐station ambient vibration surveys in the Middle Aterno Valley (MAV), an intermontane basin in central Italy and the locus of the 2009 L'Aquila earthquake. By imaging the buried interface between the infilling deposits and the top of the pre‐Quaternary bedrock, we reveal the 3‐D basin geometry and gain insights into the long‐term basin evolution. We reconstruct a complex subsurface architecture, characterized by three main depocenters separated by thresholds. Basin infill thickness varies from ~200–300 m in the north to more than 450 m to the southeast. Our subsurface model indicates a strong structural control on the architecture of the basin and highlights that the MAV experienced considerable modifications in its configuration over time. The buried shape of the MAV suggests a recent and still ongoing predominant tectonic control by the NW‐SE trending Paganica‐San Demetrio Fault System (PSDFS), which crosscuts older ~ENE and NNE trending extensional faults. Furthermore, we postulate that the present‐day arrangement of the PSDFS is the result of the linkage of two previously isolated fault segments. We provide constraints on the location of the southeastern boundary of the PSDFS, defining an overall ~19 km long fault system characterized by a considerable seismogenetic potential and a maximum expected magnitude larger than M 6.5. This study emphasizes the benefit of combining two easily deployable geophysical methods for reconstructing the 3‐D geometry of a tectonically controlled basin. Our joint approach provided us with a consistent match between these two independent estimations of the basin substratum depth within 15%.
We present the results of seismological and geophysical investigations performed by the "Istituto Nazionale di Geofisica e Vulcanologia" team operating in Amatrice village (Central Italy), in the emergency phases following the Mw 6.0 event of August 24th 2016, that caused severe damage in downtown and surrounding areas. Data from seven seismic stations equipped with both weak and strong motion sensors are analyzed in terms of standard spectral ratio to empirically define amplification function using a bedrock reference site. Ambient vibration spectral ratios between horizontal and vertical component of motion are also evaluated in a large number of sites, spread out in the investigated area, to recover the resonance frequency of the soft soil outcropping layers and to generalize the results obtained by earthquake data. Ambient noise vibration are also used for applying a 2D array approach based on surface waves techniques in order to define the near-surface velocity model and to verify its lateral variation. The results allows to better understand the amplification factors in the investigated area, showing spatial variation of site effects despite of the homogeneous shallow geological condition indicated by the microzonation studies available at moment of the described field campaign. The analysis reveals a diffuse amplification effect which reaches its maximum values in downtown area with a resonant frequency of about 2 Hz. The obtained results were used to integrate the microzonation studies and they can be used for urban planning and reconstruction activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.