Regulatory mechanisms in mucosal secretions and tissues recognize antigens and attenuate pro-inflammatory cytokine responses. Here, we asked whether human b-defensin 3 (HBD3) serves as an upstream suppressor of cytokine signaling that binds and attenuates pro-inflammatory cytokine responses to recombinant hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis strain 381. We found that HBD3 binds to immobilized rHagB and produces a significantly higher resonance unit signal in surface plasmon resonance spectroscopic analysis, than HBD2 and HBD1 that are used as control defensins. Furthermore, we found that HBD3 significantly attenuates (Po0.05) the interleukin (IL)-6, IL-10, granulocyte macrophage colony stimulating factor (GM-CSF) and tumor-necrosis factor-a (TNF-a) responses induced by rHagB in human myeloid dendritic cell culture supernatants and the extracellular signal-regulated kinases (ERK 1/2) response in human myeloid dendritic cell lysates. Thus, HBD3 binds rHagB and this interaction may be an important initial step to attenuate a pro-inflammatory cytokine response and an ERK 1/2 response.
Human neutrophil peptide α-defensins and human β-defensins are small, well-characterized peptides with broad antimicrobial activities. In mixtures with microbial antigens, defensins attenuate proinflammatory cytokine responses by dendritic cells in culture, attenuate proinflammatory cytokine responses in the nasal fluids of exposed mice and enhance antibody responses in the serum of vaccinated mice. Although the exact mechanisms are unknown, defensins first start by binding to microbial antigens and adhesins, often attenuating toxic or inflammatory-inducing capacities. Binding is not generic; it appears to be both defensin-specific and antigen-specific with high affinities. Binding of defensins to antigens may, in turn, alter the interaction of antigens with epithelial cells and antigen-presenting cells attenuating the production of proinflammatory cytokines. The binding of defensins to antigens may also facilitate the delivery of bound antigen to antigenpresenting cells in some cases via specific receptors. These interactions enhance the immunogenicity of the bound antigen in an adjuvant-like fashion. Future research will determine the extent to which defensins can suppress early events in inflammation and enhance systemic antibody responses, a very recent and exciting concept that could be exploited to develop therapeutics to prevent or treat a variety of oral mucosal infections, particularly where inflammation plays a role in the pathogenesis of disease and its long-term sequelae.
Human β-defensin-3 (HBD3) is a small, cationic, host defence peptide with broad antimicrobial activities and diverse innate immune functions. HBD3 binds to many microbial antigens and, in this study, we hypothesised that the known binding of HBD3 to Porphyromonas gingivalis recombinant haemagglutinin B (rHagB) alters, but does not inhibit, the binding of rHagB to human dendritic cells. To test this, human myeloid dendritic cells were incubated for 5 min with rHagB, HBD3 + rHagB (10:1 molar ratio), HBD3 or 0.1 M phosphate-buffered saline (PBS) (pH 7.2) and were then rapidly fixed and processed for confocal microscopy and ultramicrotomy. rHagB and HBD3 could be detected with primary monoclonal mouse antibody to rHagB (MoAb 1858) or polyclonal rabbit antibody to HBD3 (P241) and secondary fluorescent-labelled anti-mouse or anti-rabbit antibodies (confocal microscopy) or protein A–colloidal gold (immunoelectron microscopy). In cells incubated with rHagB only, fluorescence and protein A–colloidal gold were seen at the cell surface and throughout the cytoplasm. In cells incubated with HBD3 + rHagB, fluorescence was observed only at the cell surface in a ‘string of pearls’ configuration. Overall, these results suggest that HBD3 binding to rHagB alters, but does not inhibit, the binding of rHagB to human myeloid dendritic cells.
Human β-defensin 3 (HBD3) is a small, well-characterized peptide in mucosal secretions with broad antimicrobial activities and diverse innate immune functions. Among these functions is the ability of HBD3 to bind to antigens. In this study, we hypothesize that HBD3 binds to the allergen Bla g2 from the German cockroach (Blattella germanica). The ability of HBD1 (used as a control β-defensin) and HBD3 to bind to Bla g2 and human serum albumin (HSA, used as a control ligand), was assessed using the SensíQ Pioneer surface plasmon resonance (SPR) spectroscopy biosensor system. HBD1 was observed to bind weakly to Bla g2, while HBD3 demonstrated a stronger affinity for the allergen. HBD3 was assessed under two buffer conditions using 0.15 M and 0.3 M NaCl to control the electrostatic attraction of the peptide to the chip surface. The apparent KD of HBD3 binding Bla g2 was 5.9 ± 2.1 μM and for binding HSA was 4.2 ± 0.7 μM, respectively. Thus, HBD3, found in mucosal secretions has the ability to bind to allergens like Bla g2 possibly by electrostatic interaction, and may alter the ability of Bla g2 to induce localized allergic and/or inflammatory mucosal responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.