Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of water and soil, requires that these nodes be very small, light, untethered and unobtrusive. The problem of localization, i.e., determining where a given node is physically located in a network is a challenging one, and yet extremely crucial for many of these applications. Practical considerations such as the small size, form factor, cost and power constraints of nodes preclude the reliance on GPS (Global Positioning System) on all nodes in these networks. In this paper, we review localization techniques and evaluate the effectiveness of a very simple connectivity-metric method for localization in outdoor environments that makes use of the inherent radio-frequency (RF) communications capabilities of these devices. A fixed number of reference points in the network with overlapping regions of coverage transmit periodic beacon signals. Nodes use a simple connectivity metric, that is more robust to environmental vagaries, to infer proximity to a given subset of these reference points. Nodes localize themselves to the centroid of their proximate reference points. The accuracy of localization is then dependent on the separation distance between two adjacent reference points and the transmission range of these reference points. Initial experimental results show that the accuracy for 90% of our data points is within one-third of the separation distance. However future work is needed to extend the technique to more cluttered environments. Keywords-localization, location, radio-frequency wireless network. 1 We borrow the term localization from robotics, where it refers to the problem of determining the position of a mobile robot in some coordinate system.
Abstract-This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with nodes remaining largely inactive for long time, but becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in several ways: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses a few novel techniques to reduce energy consumption and support self-configuration. It enables low-duty-cycle operation in a multihop network. Nodes form virtual clusters based on common sleep schedules to reduce control overhead and enable traffic-adaptive wake-up. S-MAC uses in-channel signaling to avoid overhearing unnecessary traffic. Finally, S-MAC applies message passing to reduce contention latency for applications that require in-network data processing. The paper presents measurement results of S-MAC performance on a sample sensor node, the UC Berkeley Mote, and reveals fundamental tradeoffs on energy, latency and throughput. Results show that S-MAC obtains significant energy savings compared with an 802.11-like MAC without sleeping.Index Terms-Energy efficiency, medium access control (MAC), sensor network, wireless network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.