Electron transmission through a series of self-assembled monolayer films is studied using an iterative Green's function method with absorbing boundary conditions. The nuclear-electron interactions are calculated using suitable pseudopotentials, and the Hamiltonian is evaluated using a discrete variable representation. The presence of electronegative head groups on the metal surface gives rise to much lower transmission through the layers. The presence of these headgroups also produces asymmetric transmission effects where the transmission coefficient depends on the incident direction of the electron, as observed in recent STM measurements. Longer alkane chains (up to 18 carbon atoms) are more ordered due to the self-assembly process and have higher transmission coefficients at lower electron energies. This collective effect is observable experimentally and is not a property of single molecules in which transmission probabilities decay roughly exponentially with chain length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.